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ABSTRACT 

  

Data compression has wide range of applications in the areas of data 

transmission and data storage. Many data processing applications require storage of 

voluminous images, and the numbers of such applications are constantly increasing as 

the use of computers extends to new disciplines. At the same time, the proliferation of 

computer communication networks is resulting in massive transfer of data over 

communication links. Compressing data to be transmitted or stored reduces 

communication and/or storage costs. When the amount of data to be transmitted is 

reduced, the effect is that of increasing the capacity of the communication channel. 

Similarly, compressing a file to half of its original size is doubling the capacity of the 

storage medium. It may then become feasible to store and transmit the data at a higher 

rate.  

There are two basic approaches to improve the speed viz, 

1. By increasing the capacity of the channel 

2. By using efficient data compression techniques 

Data compression techniques represent some pictorial information in more 

compact form by removing the redundancies. In essence, compression techniques 

represent image data using fewer bits than what is required for original image. These 

types of techniques may also improve features such as extraction and selection 

procedures. 

Image compression techniques through which image information can be 

represented by less number of bits are very useful for image transmission from one 

point to another and for image archival purpose. For many image compression 

techniques incur losses such that some errors are introduced in the image reconstruction 

from its compressed representation. These kinds of techniques are called lossy 

compression. There are some techniques that provide lossless compression. Thus the 

compression ratio and the amount of error introduced will be considered during the 

selection/development of compression methods. 

A lot of research is currently being in progress on following data compression 

techniques viz, 

1. Wavelet transform, and 

2. Fractal block coding 

Both are lossy compression techniques. Wavelet transforms compression 

technique is very much similar to dictionary based compression techniques. In wavelet 



  XVII 

transform, as compression ratio increases the quality of image becomes poor, and in 

case of fractal block coding, compression ratio is high but the encoding and decoding 

process requires more processing time. 

The scope of this research work is to study data compression methods spanning 

over almost forty years of research, from the work of Shannon, Fano, and Huffman in 

the late 40’s to a technique developed in 1986, and suggest a novel technique to achieve 

the maximum compression ratio by retaining the visual quality of images with lesser 

encoding/decoding processing time so as to support real time image processing. The 

focus of this research is to develop the algorithms for digital image data compression.  

In this thesis, the work starts with the proper selection of the mother wavelet 

from the known wavelets. As per the literature survey, it is found that wavelet image 

compression techniques are not suitable for high frequency images, and hence the 

results of wavelet packets and wavelet are compared in this thesis. By considering the 

merits of wavelet packets, this technique is selected for transformation. To select the 

best basis function, the algorithms are developed, which uses threshold entropy; log 

entropy, and Shannon entropy. The results are compared with new suggested technique, 

“The Best Basis Selection Based On Energy Contain”.  

In the compression process, threshold selection plays crucial role. In the present 

work, adaptive thresholding is introduced, where the threshold is calculated on the basis 

of the nature of the image. Lossy RLE technique is introduced for encoding during the 

last phase of compression. The algorithm is developed, implemented, and tested over 

the range of natural and synthetic images, and conclusions are drawn. The results 

revealed that the performance of the presented method is better than the existing known 

compression methods.  
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CHAPTER 1 

INTRODUCTION 

1.1.0 PREAMBLE 

In today‟s modern era, multimedia has tremendous impact on human lives. It 

becomes inseparable part of our day-to-day activities. Image is one of the most 

important media contributing to multimedia. The unprocessed image heavily consumes 

very important resources of the system. And hence it is highly desirable that the image 

be processed, so that efficient storage, representation and transmission of it can be 

worked out. The processes involve one of the important processes- “Image 

Compression”.  Methods for digital image compression have been the subject of 

research over the past decade. Advances in Wavelet Transforms and Quantization 

methods have produced algorithms capable of surpassing image compression standards, 

like the Joint Photographic Expert Group (JPEG) algorithm. The recent growth of data 

intensive multimedia based applications have not only sustained the need for more 

efficient ways to encode the signals and images but also have made compression of such 

signals central to storage and communication technology. The research confined to this 

thesis is to aim at improving the compression ratio by maintaining the quality of image. 

This chapter includes the motivation for the research, current techniques in use for the 

image compression and objectives of research work.  

1.2.0    MOTIVATION 

In Information Technology, multimedia plays an important role. The image is 

one of the media of information. Thousands of words of information can be replaced by 

a single image. It is always said that, “ a picture worth thousands of words”. This is true 

in the modern era where information has become one of the most important values of 

the assets. Uncompressed image requires large memory to store the image and large 

bandwidth to transmit the image data. At the present state of technology, the only 

solution is to compress the multimedia data before its storage and transmission, and 

decompress it at the receiver. For example, with compression ratio of 30:1, the space, 

bandwidth and transmission time requirement can be reduced by the factor of 30, with 

acceptable quality. 

The table 1.2.1 shows the parameters: disk space, transmission bandwidth and 

transmission time needed to store and transmit various types of unprocessed data from 

text to full motion video [1].  
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Table 1.2.1 Uncompressed Multimedia data and required storage space, 

transmission bandwidth, and transmission time 
Multimedia 

Data 

Size/Duration Bits/Pixel or 

Bits/Sample 

Uncompressed 

Size (B for 

bytes) 

Transmission 

Bandwidth (b 

for bits) 

Transmission 

Time (using a 

28.8K Modem) 

A page of text 11” × 8.5” 
Varying 

resolution 
4-8 KB 

32 – 64 

KB/page 
1.1 – 2.2 sec 

Telephone 

quality speech 
10 sec 8 bps 80 KB 64 KB/sec 22.2 sec 

Grayscale 

Image 
512 × 512 8 bps 262 KB 

2.11 

MB/image 
1 min 13 sec 

Color Image 512 × 512 24 bps 786 KB 
6.29 

MB/image 
3 min 39 sec 

Medical 

Image 
2048 × 1680 12 bps 5.16 MB 

41.3 

MB/image 
23 min 54 sec 

Full-motion 

video 

640 × 480,    

1 min (30 

frames/sec) 

24 bps 1.66 GB 221 MB/sec 5 days 8 hrs 

 

The table1.2.1 clearly illustrates the need of large storage space, large 

transmission bandwidth and more transmission time for images and other data. While 

the advancements of the computer storage technology and communication technology 

continue at the rapid rate, the means for reduction in storage requirement of an image is 

still needed for most of the applications. Image compression is concerned with 

minimizing the number of bits required to represent the image, which reduces the 

storage space, requirements of bandwidth, and transmission time. Thus the science of 

digital image compression has emerged. Current methods of image compression, such 

as the popular Joint Photographic Experts Group (JPEG) standard can provide good 

performance in terms of retaining image quality while reducing storage requirements. 

But even the popular standards like JPEG have limitations. Research for new and better 

methods of image compression is ongoing. This thesis discusses the previous work, and 

present status of image compression, and presents new method of Image Compression 

to improve the compression ratio by retaining the quality of image. The thesis also 

includes, the potential of proposed method for inclusion in new compression 

applications, and standards. 

1.3.0   RECENT METHODS IN USE 

  By understanding the need of the image compression, a number of methods have 

been presented over the years for performing image compression. They all have one 

common goal, to alter the representation of the information contained in an image, so 

that it can be represented sufficiently well with less amount of memory. It is always 

desired that the image representation is acceptable, in which the content of an image can 

be approximated using a small number of parameters. The Discrete Cosine Transform 
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(DCT) developed by Ahmed, Natrajan, and Rao[1974] is one of the transforms used in 

image compression application. Its application to image compression was pioneered by 

Chen and Pratt [1984] [2]. 

During the 1980‟s and 1990‟s, Discrete Cosine Transform (DCT) based 

compression algorithms, and international standards were developed to alleviate 

storage, and bandwidth limitations imposed by digital still images, and motion video 

applications [3, 89]. Today there are three DCT-based standards, widely used and 

accepted worldwide: 

 JPEG (Joint Photographic Expert Group) 

 H.261 (Video codec for audiovisual Group) 

 MPEG (Motion Picture Expert Group) 

Each of these standards is well suited for particular applications: JPEG for still 

image compression, H.261 for video conferencing, and MPEG for high-quality, 

multimedia systems. The basic compression scheme for all three standards can be 

summarized as follows: divide the picture into 8 × 8 blocks, determine the relevant 

picture information, discard redundant or insignificant information, and encode relevant 

information with least number of bits. Common stages in all three standards are:  

 Discrete Cosine Transform (DCT) 

 Zig-Zag Scanning 

 Quantization 

 Entropy Coding 

 Motion Estimation 

The International Standards Organization (ISO) has proposed the JPEG standard 

[2, 4, 5] for image compression. Each color component of still image is treated as a 

separate gray scale picture by JPEG. Although JPEG allows any color component 

separation, images are usually separated into Red, Green, and Blue (RGB) or 

Luminance (Y), with Blue and Red color differences (U = B – Y, V = R – Y). 

Separation into YUV color components allows the algorithm to take the advantages of 

human eyes‟ lower sensitivity to color information. For quantization, JPEG uses 

quantization matrices. JPEG allows a different quantization matrix to be specified for 

each color component [3].   

Though the JPEG provides good results previously, it is not perfectly suited for 

modern multimedia applications because of blocking artifacts. JEPG can only work with 

8 × 8 blocks one at a time. This causes the artifact in compressed images-small squares 

all over the images, known as blocking artifacts [9] when compression ratio is high.  
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Wavelet theory and its application in image compression had been well 

developed over the past decade. The field of wavelets is still sufficiently new and 

further advancements will continue to be reported in many areas. Many authors have 

contributed to the field to make it what it is today, with the most well known pioneer 

probably being Ingrid Daubechies. Other researchers whose contribution directly 

influence this work include Stephane Mallat for the pyramid filtering algorithm, and the 

team of R. R. Coifman, Y. Meyer, and M. V. Wickerhauser for their introduction of 

wavelet packet [6].  

Although the JPEG methods are the efficient, the block noise (artifact) appears 

in the resulting image. The block noise in an image makes the picture quality poor 

especially for our human eyes [9]. Further research has been done on still image 

compression and JPEG-2000 standard is established in 1992 and work on JPEG-2000 

for coding of still images has been completed at end of year 2000. The upcoming JPEG-

2000 standard employs wavelet for compression due to its merits in terms of scalability, 

localization and energy concentration [6, 7]. It also provides the user with many options 

to choose to achieve further compression. JPEG-2000 standard supports decomposition 

of all the sub-bands at each level and hence requires full decomposition at a certain 

level. 

The basic compression scheme in JPEG-2000 can be summarized as: the source 

image is first transformed using Discrete Wavelet Transform (DWT); then quantization 

of transformed image is carried out; the quantized image is then encoded by using the 

entropy encoders. Even though the JPEG-2000 is widely used, it suffers from blurring 

and artifacts. 

1.4.0 OBJECTIVES OF RESEARCH WORK 

Wavelet is used to compress the image in standard JPEG 2000. JPEG-2000 

operates in spectral domain, trying to represent the image as a sum of smooth oscillating 

waves. Spectral domain is appropriate for capturing relatively smooth color gradients, 

but not particularly appropriate for capturing the edges [9]. Therefore, the wavelet 

packet and wavelet packet best tree based on Log entropy, Shannon entropy, and 

Threshold entropy are being used for image compression to avoid the loss of high 

frequency components. As per the survey, a thorough investigation with the intention of 

determining whether the wavelet packet best tree on the basis of energy contain with the 

adaptive thresholding can be a better choice for image compression. The thesis presents 

an innovating state-of-the-art image compression technique based on wavelet packet 
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best tree on the basis of energy contain with adaptive thresholding and lossy encoding.  

The images used in this work include many popular images like Aishwarya, Cheetah, 

Lena, Woman, Barbara, Mandrill, Donkey, Butterfly, and Bird. Additionally „Synthetic‟ 

Computer generated images have been chosen for having characteristics different from 

natural images. This research work includes the following objectives: 

1. Comparative analysis of the well known, Daubechies, Biorthogonal and Coiflets 

wavelet is presented. Both quantitative and qualitative measures of performance 

are examined for each of the several natural and synthetic images. 

2. Comparative analysis of the wavelet and wavelet packet tree is presented. Both 

quantitative and qualitative measures of performance are examined for each of 

the several natural and synthetic images. 

3. The Comparative analysis of new wavelet packet tree on the basis of energy 

contain is presented with known wavelet packet best tree on the basis of Log 

entropy, Shannon entropy, Threshold entropy. Both quantitative and qualitative 

measures of performance are examined for each of the several natural and 

synthetic images. 

4. The use of wavelet packet best tree on the basis of energy contain with adaptive 

threshold for thresholding is proposed as a new technique for the image 

compression. Both quantitative and qualitative measures of performance are 

examined for each of the several natural and synthetic images. 

5. The lossy encoding technique is implemented. Both quantitative and qualitative 

measures of performance are examined for each of the several natural and 

synthetic images. 

1.5.0   ORGANIZATION OF REPORT 

The research work reported in this thesis has been focused on Image 

Compression with the review of current existing techniques. The highlights of the 

research work presented are, 

 The quantitative and qualitative measures of known, Daubechies, Biorthogonal 

and Coiflets wavelet performance are examined for each of the several natural, 

and synthetic images, and the analyses of the same are presented. 

 The quantitative and qualitative measures of the wavelet and wavelet packet tree 

performance are examined for each of the several natural and synthetic images, 

and the analyses of the same are presented. 
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 The quantitative and qualitative measures of new wavelet packet tree on the 

basis of energy contain performance are examined for each of the several natural 

and synthetic images, and the comparative analysis of new wavelet packet tree 

on the basis of energy contain is presented with known wavelet packet best tree 

on the basis of Log, Shannon, Threshold Entropy.  

The work reported in this thesis has been organized into six chapters. The 

content of each chapter is presented briefly in following paragraphs.  

In chapter one, the Image Compression is elaborated and motivation behind the 

work is presented, the recent methods used for Image Compression are surveyed, and 

the objectives and methodology of the proposed research work are defined. 

In chapter two, the fundamentals of Image Compression and the literature survey 

is presented, various ways of image representation are considered; explicit definition of 

compression ratio is provided; various redundancies and irrelevancy occurring in an 

image are mentioned. Classification of the compression techniques and methods used 

are explained. The criteria for image quality measurements are mentioned in detail such 

as Mean Option Score (MOS), Peak Signal to Noise Ration (PSNR), Mean Square Error 

(MSE), Normalized Absolute Error (NAE), Maximum Difference (MD) and Average 

Difference (AD). The design criteria for compressing graphical data are discussed. In 

chapter two, the Image Compression methodology is discussed thoroughly and current 

trends and techniques are surveyed. Wavelet packet tree and multi-wavelets are the 

thirst areas of research in this regard. The shortcoming and discrepancies among the 

methods are identified.  

In chapter three, the basic theory of wavelet and many popular wavelets with 

characteristics are discussed in details. The wavelet tree, wavelet packet tree and well-

known techniques of entropy are discussed such as log entropy, threshold entropy and 

Shannon entropy.  

In chapter four, the implementation of proposed algorithm is presented. This 

chapter includes comparative analysis of the known wavelets, comparative analysis of 

the wavelet, and wavelet packet tree. Then the comparative analysis of new wavelet 

packet best tree on the basis of energy contain with the known entropy and proposed 

methods of image compression for natural images and synthetic images are presented. 

The new technique of Image Compression, „Wavelet packet best tree on the basis of 

energy contain with adaptive thresholding and lossy encoding technique for image 

compression‟ is presented.  
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In chapter five, the results of proposed algorithm are presented as compressed 

images. The image includes the wide variety of natural and synthetic colored and gray 

images. The test images are - viz Aishwarya, Cheetah, Lena, Barbara, Bird, Donkey, 

Mandrill, Butterfly, Horizontal, and Vertical line based images. Alongwith the 

compressed images the resultant percentage of compression, compression ratio, and 

peak signal to noise ratio for the different values of P are presented. Here P is a quality 

factor defined in the algorithm for the additional flexibility as per the demand of the 

application. 

Chapter six concludes with summary of results and throws light on future 

developments in the same area.   

______________ 
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CHAPTER 2 

LITERATURE SURVEY 
  

Chapter one included the discussion of motivation for the research work, current 

techniques in use, and objectives of research work. This chapter discusses basics of 

image representations, and image compression. In Image Compression, the researchers‟ 

aim is to reduce the number of bits needed to represent an image by removing the 

spatial and spectral redundancies. Image Compression method used may be Lossy or 

Lossless. As lossless image compression focuses on the quality of compressed image, 

the compression ratio achieved is very low. Hence, one cannot save the resources 

significantly by using lossless image compression. The image compression technique 

with compromising resultant image quality, without much notice of the viewer is the 

lossy image compression. The loss in the image quality is adding to the percentage 

compression, hence results in saving the resources. Many modern image compression 

techniques are based on lossy methods. In lossy image compression Mean Square Error 

(MSE) and Peak Signal to Noise Ratio (PSNR) are most commonly used objective 

measures of image quality. Applications of image compression are primarily in 

representation, transmission, and storage of information [104]. 

This chapter also includes the principle of image compression, and various color 

models used for colored image representation, and review of current techniques used for 

image compression.  

2.1.0   IMAGE REPRESENTATION 

The digital image is represented as two-dimensional array of picture elements 

having M rows and N columns. M × N defines the resolution of the image. Every 

sampled picture element is known as pixel in digital image processing. Each pixel is 

identified with unique positional tuple (x, y). In other words, image is stored as a two 

dimensional signal. It is represented by function f (x, y), where x and y are spatial co-

ordinates of a pixel and the value of function f at any pair of co-ordinate (x, y) is called 

as intensity of a pixel or gray level of a pixel of the image at that point in gray images 

[11]. For color images the function f maps the color information associated with the 

pixel at (x, y).   
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Different techniques are used to represent the digital image. The basic 

techniques used to represent the digital images are: 

 Indexed image 

 Binary image 

 Intensity image  

 Color image  

2.1.1 INDEXED IMAGE 

An indexed image representation consists of two matrices:  i) data matrix (X) 

and ii) color matrix (map). Map is an L × 3 array of class double containing floating-

point values in the range of 0 to 1, where L is the maximum intensity of the pixel. For 

example, if eight binary bits are used for representation of intensity of a pixel, then 

value of L is 256. Each row of the map specifies the red, green, and blue components of 

a single color. Matrix X is M × N array of class integer, containing integer value in the 

range of 0 to 255. Each element of array X is an index to the map [12], to retrieve the 

color components red, green and, blue from the map. This entry defines the true colors 

of corresponding pixel. For example, if the value of the pixel is 100, the value 100 acts 

as a pointer to the color map and selects the row number 101, the red, green, and blue 

value corresponding the row, define the true colors of the pixel of intensity 100. The 

value „0‟ point to the first row in a map and value „1‟ points to the second row in a map, 

and value 255 point to the row number 256 in a map. Matlab supports the usage of 

indexed image representation. There are various color maps supported by Matlab, but it 

is tested and proved that the usage of these color maps result in total change in color 

complexion of the resultant image. That‟s why the true color image processing is not 

recommended with indexed image file format.  

2.1.2 BINARY IMAGE 

Binary image representation is the primitive type of image representation. It is 

represented by a single matrix (B) of size M × N, where M is the width, and N is the 

height of the digital image in terms of pixels. Larger the values of M and N, better the 

resolution of an image, but it takes more storage space. The number of bits required to 

store the digital image is M × N × 1. The value of each pixel assumes to be one of the 

two discrete (binary) values; these two values correspond to ON (1) or OFF (0). A 

binary image is stored in terms of 0‟s and 1‟s. It is special kind of intensity image 

containing only black and white colors [13]. Where value 0 represents black color and 

value 1 represents white color. It requires very less storage space, but due to only two 
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color options it is impossible to represents real gray and color images. That‟s why it is 

not recommended for image representation and processing. It is only used for pure black 

and white images.  It can be considered as indexed image with only two colors. It was 

previously used to display the images using Monochrome Display Adaptors (MDA). 

2.1.3 INTENSITY IMAGE 

Intensity image representation is one of the simplest and elementary types of 

image representation. It is represented by a single matrix (I) of size M × N, where M is 

the width, and N is the height of the digital image in terms of pixels. Larger the values 

of M and N, better the resolution of an image, but it takes more storage space. The 

number of bits required to store the digital image is M × N × number of bits used for 

intensity representation. Each element of the image matrix represents the intensity of a 

corresponding pixel of image. The elements in the intensity matrix represent various 

intensities or gray levels [13]. If N bits are used to represent the intensity or gray scale 

of every pixel, then 2
N
 various intensities are possible. The minimum intensity value is 

zero and the maximum intensity value 2
N
–1. If 8 bits are used for representation of gray 

scale, then the minimum intensity 0 represents black color and maximum intensity 255 

represents white color.  If 16 bits are used for representation of gray scale, then the 

intensity 0 represents black color and maximum intensity 65535 represents white color. 

As the intensity value changes from minimum to maximum, different gray shades are 

generated from full black color to full white color. 

2.1.4 COLOR IMAGE 

 In today‟s multimedia era color images have significant impact on human lives. 

There are various techniques of representation of color in color images have been 

developed and used in various applications. The color associated with a single picture 

element is constituted by the intermixes of various color components. The color models 

are developed to support the idea of color image representation. Color model is a 

specification of a co-ordinate system and a sub space within that system, where a single 

point represents each color. Most color models in use today, are oriented either towards 

hardware or towards applications, where color manipulation is goal.  In terms of digital 

image processing the hardware oriented models most commonly used in practice are 

RGB (Red, Green, Blue); the CMY (Cyan, Magenta, Yellow); the CMYK (Cyan, 

Magenta, Yellow, Black); and the HSI (Hue, Saturation and Intensity) [13, 14]. 
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2.1.4.1 RED, GREEN, BLUE COLOR MODEL 

In the RGB model, each color appears in its primitive spectral component of red, 

green, and blue. These are the primary colors of light. This model is based on Cartesian 

coordinate system. The RGB is referred as „true color‟ or “full color” image. The 

number of bits used to represent each pixel in RGB space is called the pixel depth. In 

color image representation each pixel has three-color values red, green, and blue. The 

color of each pixel is determined by the triplet (R, G, B). In graphical file formats, RGB 

images are stored as 24-bit images; where 8 bits represent the red, green, and blue 

components of every pixel [13]. This yields a potential of sixteen million different 

colors. The actual numbers of colors in a 24-bit RGB image are 2
24

 = 16,777,216. 

When the color value of basic color components is zero, then the corresponding 

color component is absent, and when the color value of basic color components is 255, 

then the corresponding color component is fully present in the corresponding pixel. The 

pixel whose components are (0, 0, 0) displayed as black, and pixel whose color 

components are (255, 255, 255) displayed as a white. Generally RGB model is preferred 

to process the color images due to rich range of color shades and it gives the true color 

perceptions. RGB image is stored in MATLAB as an M × N × 3 data array. The three-

color components for each pixel are stored along the third dimension of the data array. 

For example the red, green, and blue color components of the pixel (x, y) are stored in 

MATLAB as RGB (x, y, 1), RGB (x, y, 2) and RGB (x, y, 3) respectively. The RGB 

color model, use predominantly for light emitting systems (for example Televisions and 

Computer monitors). 

2.1.4.2 CMY AND CMYK COLOR MODELS 

 Cyan, Magenta, and Yellow are the secondary colors of light but are primary 

colors of color pigments. Since these colors of the pigments the original colors of light 

are not reflected. For example when a surface is coated with Cyan pigment is 

illuminated with white light, red light is not reflected from the surface. That is Cyan 

subtract from red light from reflected white light, which it self is composed of equal red, 

green, and blue light. CMY color values are computed from the primary colors values. 

Equal amount of pigment primaries Cyan, Magenta, and Yellow should produced black 

and it gives rise to CMYK color model. The CMY color model, use for light-absorbing 

systems (for example printing) [14]. 
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2.1.4.3 HSI COLOR MODEL  

 Hue, Saturation and Intensity are calculated from the primary colors (RGB). Hue 

is the color attribute that describes the pure color (pure Yellow, Orange, or Red), where 

saturation gives a measure of the degree to which the pure color is diluted by white 

light. The intensity is the most useful descriptor of monochromatic images. HIS color 

model; decouple the intensity components from the color carrying information in color 

image [14].   

2.2.0 COLOR SPACE AND HUMAN PERCEPTION 

The use of color in image processing algorithm is motivated due to two-principle 

factors [13] 

i) The color is powerful component, that often simplifies object identification 

and extraction of the scenes; 

ii) The human visual perception can identify thousands of color shades and 

intensities, compared to about only few shades of gray color. 

The color image processing is divided into two major areas: full color and 

pseudo color image processing. Basically the colors that humans and some other 

animals perceive an object are determined by the nature of the light reflected from the 

object. The human eye has two types of cells playing major role in object perception; 

Rod cell and Cone cell. Detail experimental evidence has established that the six to 

seven million cone cells in the human eye can be divided into three principle sensing 

categories corresponding roughly to red, green and blue. Approximately sixty-five 

percent of all cones are sensitive to red light, thirty-three percent are sensitive to green 

light and two percent are sensitive to blue light. Wavelength of red light is 700 nm, 

green light is 546.1 nm and blue light is 435.8 nm. The characteristics used to 

distinguish one color from another are brightness, hue, and saturation. Brightness 

embodies chromatic notation of intensity. Hue is an attribute associated with the 

dominant wavelength by an observer. Saturation refers to the relative purity or the 

amount of the white light mixed with a hue. Degree of saturation is inversely 

proportional to the amount of white light added. Hue and saturation taken together are 

called chromaticity and therefore a color may be characterized by its brightness and 

chromaticity. 

RGB color model is ideal for image color generation, but when it is used for 

color description, its scope is much limited. The HSI model is an ideal tool for 
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developing image-processing algorithm based on color descriptions that are natural and 

intuitive to human eye. 

Image is a two-dimension signal, it is represented by the positive function           

I = f (x, y), where x and y are the co-ordinates of pixel and I is value corresponding to 

the pixel. The digital color image is constituted by the three primary color values, (that 

is RGB); such an image is referred as RGB color image. RGB color image is 

represented by a three dimensional array, where the first plane in the third dimension, 

represents the red pixel intensities, the second plane represents the green pixel 

intensities and the third plane represents the blue pixel intensities. Human visual 

perception is very sensitive to small change in the value of one of the colors when the 

remaining colors are fixed, and therefore the individual components of RGB color 

image cannot be analyzed independently.  

For color image compression techniques, the selection of proper color model is 

extremely crucial because in lossy image compression technique data cannot be 

recovered exactly. Red, green and blue color components of pixel are correlated with 

visual appearance, therefore even though RGB is most common storage format for 

images; it is not used for image compression. If it is used, high visual distortion is 

introduced. It necessitates the conversion of RGB colors into another colors 

representation, which doesn‟t have the correlation among the components. 

2.2.1 YUV AND YCrCb COLOR REPRESENTATION 

 NTSC (United States National Television Systems Committee) mandated color 

encoding for color televisions. It uses YUV color encoding, where Y is luminance, U is 

the difference (R – Y), and V is difference (B – Y). U and V represent color information 

(chrominance) [14].   

YCrCb is subset of YUV. The luminance Y and chrominance U (R – Y) and V 

(V – Y) are calculated with the equations  

Y = 0.299×Red + 0.587×Green + 0.114×Blue           --- 2.2.1 

R – Y  = 0.701×Red – 0.587×Green  - 0.114×Blue           --- 2.2.2 

B – Y  = - 0.299×Red – 0.587×Green  + 0.886×Blue           --- 2.2.3 

The Red, Green and Blue values are assumed to be the fractions in the range of 

0.0 to 1.0. Notice that the luminance equation will always produce a value of Y in the 

range of 0.0 to 1.0. However, the value of color difference (R – Y) produces values in 

the range from – 0.701 to +0.701, and the value of color difference (B – Y) produces 

values in the range from – 0.886 to +0.886. These ranges are not ideal for digital 
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representation, so they are both remapped into the range of values –0.5 to +0.5 [14]. 

This gives  

Cr = 0.500×Red – 0.419×Green – 0.081×Blue           --- 2.2.4 

Cb =  – 0.169×Red – 0.331×Green – 0.5×Blue            --- 2.2.5 

These values are converted to an 8-bit binary encoding using the equations: 

Y = round (219 ×Y+16) 

Cr = round (224 ×0.713 × (R – Y) +128) 

Cb = round (224 ×0.564 × (B – Y) +128) 

The Red, Green and Blue values are assumed to be in the range of 0 to 255 the 

luminance equation will produce a value of Y in the range of 0 to 255. Human eyes are 

more sensitive to the change of brightness of color. It is proved that YCrCb color space 

do not have correlation among the spaces hence this is correct choice of color space for 

the color image compression. The equations used to convert the basic colors RGB into 

YCrCb are given by  

Y = 0.299×Red + 0.587×Green + 0.114×Blue           --- 2.2.6 

Cr = 0.701×Red – 0.587×Green  – 0.114×Blue           --- 2.2.7 

Cb = - 0.299×Red – 0.587×Green  + 0.886×Blue           --- 2.2.8 

After the color image processing, the components YCrCb are remapped to RGB 

color components to display the image, using the equations 

Xr =Y + Cr                --- 2.2.9 

Xg = Y – 0.509 × Cr – 0.194 × Cb           --- 2.2.10 

Xb = Y + Cb              --- 2.2.11 

Many graphic file formats use YCrCb color encoding method such as IIF (Image 

Interchange Facility), JEPG (Joint Photograph Expert Group), MPEG (Motion Picture 

Expert Group), and TIFF (Tagged Interchanged File Format). 

2.3.0   PRINCIPLE OF IMAGE COMPRESSION  

In today‟s multimedia era, images are one of the important media of information 

representation. We have already discussed the importance of image compression to use 

the resources efficiently. Image compression reduces the number of bits required to 

represent the image, therefore the amount of memory required to store the data set is 

reduced. It also reduces the amount of time required to transmit a data set over a 

communication link at a given rate. Different methods are developed to perform the 

image compression. The compression ratio is one of the quantitative parameters to 
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measure the performance of compression methods. Compression ratio is defined as ratio 

of the size of original data set to the size of the compressed data set [14]. 

setdatacompressedtheinbytesofNumber

setdataoriginaltheinbytesofNumber
ratioompression  C            --- 2.3.1 

The compression ratio is expressed as a single number or as two numbers with 

the second number typically being one. For example 10:1 means 10 bytes of the original 

data are represented by one byte.  

The percentage of compression is also one of the alternative parameter to measure the 

performance of the compression. It is the ratio of difference of number of bytes of 

original image and compress image to number of bytes of original image into hundred. 

     
100
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
setdataoriginaltheinbytesofNo

setdatacompressedtheinbytesofNosetdataoriginaltheinbytesofNo

Percentageompression

        --- 2.3.2 

Bits/pixel is another standard method of specifying a compression ratio. The average 

number of bits required to represent the data value for the single pixel of an image is 

referred as bits/pixel [14]. 

The common characteristic of most of the images is that, the neighboring pixels 

are correlated, and image contains redundant information [1]. Therefore the most 

important task in image compression is to find a less correlated representation of the 

image. The fundamental component of image compression is reduction of redundancy 

and irrelevancy. Redundancy reduction aims at removing duplication from image, and 

irrelevancy reduction omits parts of the signal that will not be noticed by Human Visual 

System (HVS) [96]. The redundancies in an image can be identified as spatial 

redundancy, spectral redundancy and temporal redundancy. 

 Spatial redundancy  

It is the correlation between neighboring pixel values. 

 Spectral redundancy  

It is correlation between different color planes or spectral band. 

 Temporal Redundancy  

It is correlation between adjacent frames in a sequence of images. 

Image compression research aims at reducing the number of bits needed to represent an 

image by removing the spatial and spectral redundancies as much as possible. Since the 

focus is only on still natural image compression, the temporal redundancy is not 

considered as it is used in motion picture compression (video) [1].  



   16 

 

 

2.4.0 COMPRESSION TECHNIQUES 

Various applications demand various degrees of compression with/without 

compromising the quality of image. The compression techniques are classified into two 

groups:  

 Lossless compression  

 Lossy compression 

2.4.1 LOSSLESS COMPRESSION 

In lossless compression schemes the reconstructed image, after compression, is 

identical to the original image. Lossless compression can achieve modest compression 

but the information of all pixels is preserved after the compression and the original 

image may be perfectly reconstructed. The small error is introduced due to rounding 

during the calculations, and it is insignificant, and cannot be noticed by human eye. 

Lossless methods rely on elimination of coding redundancy; it finds probability 

distribution of the data stream to reduce the data volume by using a customized 

representation of the information content. This technique of compression often has low 

compression ratio, but retains the quality of an image. And hence this technique is 

suitable for application, which do not allow loss in image information. An example 

application is: media includes a program file or text and media where the data must be 

preserved exactly for legal or other reasons. The Run-Length coding, Huffman coding 

and Arithmetic coding, bit plain coding, lossless predictive coding and Lempel-Ziv-

Welch (LZW) coding are the few examples of lossless image compression coding 

technique [14, 99]. Though reconstructed image quality is extremely good in lossless 

compression, this technique fails to save the resources significantly. Hence, there is 

need to develop the compression technique, which can save the considerable amount of 

resources in multimedia applications. 

2.4.2 LOSSY COMPRESSION 

To save the resources significantly another technique known as lossy 

compression was developed. In lossy compression technique, the information of all 

pixels is not preserved after the compression. These methods rely on elimination of 

coding redundancy; inter pixel redundancy, and psycho-visual redundancy. In lossy 

compression technique, methods are applied which extract the essential information 

from the original image and discard irrelevant information. The extracted information is 

coded compactly to improve the further compression ratio. 
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The extraction of the information from the original image is based on Human 

Visual System. By exploring Human Visual interaction characteristics carefully, the 

compression algorithm can discard information, which is irrelevant to human eye. This 

technique of compression has high compression ratio and compromised image quality. 

This technique is suitable in applications that require more compression ratio, and can 

accept the compromise image quality. Based on lossy compression technique algorithms 

were suggested by few researchers. The popular techniques are used in JPEG and JPEG 

2000 [1]. Basic goal of researcher is to improve the compression ratio by maintaining 

the quality of image. 

2.5.0 MEASURES OF IMAGE QUALITY 

In lossless image compression techniques, the reconstructed image is identical to 

the original image and hence quality is not an issue. But in lossy compression technique, 

quality is one of the issues because decoded image is an approximation of the original 

image. There are different quality measure criteria, available for quality assessments. 

These measure criteria are classified as [15]:  

 Subjective measures 

 Objective measures 

2.5.1 SUBJECTIVE MEASURES 

The subjective criteria are based on group of human examiners, assessing the 

image quality. In subjective criteria the group of human examines original image, and 

reconstructed image; the examiners assign grades. On the basis of the grade, quality of 

reconstructed image is assessed. Mean Opinion Score (MOS) is one of the subjective 

evaluations of image quality measure. The MOS values were obtained from an 

experiment involving the group of persons; the testing methodology was the double 

stimulus impairment scale method. The double stimulus impairment scale method uses 

references and test conditions, which are arranged in pairs such that the first in the pair 

is unimpaired reference, the second is the same sequence impaired. The original source 

image without compression was used as the reference condition. The assessor is asked 

to note on the second, keeping in mind the first and five-grade impairment scales 

described in ITU-BT Rec. 500 [15,16]. Five grade impairment with proper description 

for each grade: 5-imperceptible, 4-perceptible, 3-slightly annoying, 2-annoying, 1-very 

annoying. MOS for each test condition and test image are calculated 

 
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   18 

 

 

Where „i‟ is the grade and p (i) is the grade probability. Another method for evaluation 

of the quality based is Double Stimulus Continuous Quality Scale (DSCQS) [17], which 

was presented to the viewers for two images, one original image, and other was 

processed image. Viewers evaluated image quality of both images using grading scale 

of five intervals (1=Excellent, 2=Good, 3=Fair, 4=Poor, 5=Bad) [15]. However 

subjective evaluation is usually too convenient, but it is more expensive, and 

measurements should be processed very carefully [17,18,19,20]. This method has some 

difficulties: 

 Human judgment vary from time to time and person to person  

 Human judgment may be significantly affected by the presence of the system, 

which introduce errors or artifacts. 

With due consideration of discrepancies in subjective criteria for compressed image 

assessment, objective criteria for quality assessment were recommended.  

2.5.2 OBJECTIVE MEASURES 

In the process of image compression, the noise is introduced due to 

thresholding/quantization. The noise is referred as an error in image processing, and it 

degrades the quality of image. To measure the quality of compressed image, the 

different objectives measures are recommended.  As Human Intervention is involved in 

subjective criteria of image quality assessment, it is prone to improper interpretation. 

Hence objective criteria are preferred over the subjective criteria for quality of image 

assessment. These criteria involved computations to calculate various parameters 

contributing to quality assessment of an image. There are many objective quality-

measuring methods that have been developed for image quality evaluation in last few 

years. And they are based on numerical measures of image quality and computable 

distortion measures [17]. These criteria can be divided into two categories: Image 

differencing, and Feature Extraction. 

i) Image differencing   

Image differencing usually uses matrix-based operations to derive important 

parameters of an image. 

ii) Feature Extraction. 

In feature extraction category, the important features of image quality are extracted.  

The few common objective quality measures are discussed here, which are 

evaluated in work [15, 20, 21]. They are discrete and provide some degree of closeness 

between the digital images by exploiting the differences in the statistical distributions of 
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pixels. The objective criteria considered for the discussion which are commonly used to 

measure the quality of an image are [20, 21]: 

i) Mean Square Error (MSE) 

ii) Signal to Noise Ratio (SNR)  

iii) Peak Signal to Noise Ratio (PSNR) 

iv) Normalized Cross-correlation (NK) 

v) Average Difference (AD) 

vi) Maximum Difference (MD) 

vii) Structural Content (SC) 

viii) Normalized Absolute Error (NAE) 

i) Mean Square Error (MSE) 

It is measured as the average of square of error introduced in a compressed image. It is 

defined by the equation  
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Where M × N s size of image ),( crf  and ),(ˆ crf denotes the row element r, and 

column element c of original image and the reconstructed image respectively. 

The root mean square error is calculated from MSE and some times RMSE is used as 

one of the objective quality measures. It is given by the equation- 
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ii) Signal to Noise Ratio (SNR) 

Signal to Noise Ratio is defined as ratio of signal power to noise power. It is given by 

the equation  
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iii)  Peak Signal to Noise Ratio (PSNR) 

Peak Signal to Noise Ratio is defined as ratio of maximum signal power to noise power. 

It is given by the equation  
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Where n is number of bits used for the intensity of pixel. For n = 8  



   20 

 

 











RMSE
PSNR

255
log20           --- 2.5.2.5 

iv) Normalized Cross-correlation (NK) 

Normalized Cross-correlation is obtained by the given equation 
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v) Average Difference (AD) 

Average Difference is obtained by the given equation 
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vi) Maximum Difference (MD) 

Maximum Difference is obtained by the given equation 
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vii) Structural Content (SC) 

Structural Content is obtained by the given equation 
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viii) Normalized Absolute Error (NAE) 

Normalized Absolute Error is obtained by the given equation 

  

















1

0

1

0

1

0

1

0

),(/),(ˆ),(
M

r

N

c

M

r

N

c

crfcrfcrfNAE      --- 2.5.2.10 

The Mean Square Error and Peak Signal to Noise Ratio are most commonly 

used objective quality measures in image quality evaluation. Because they are simple to 

calculate, have clear physical meanings and mathematically convenient in the context of 

optimization. For color images the Mean Square Error is calculated for the 

reconstruction of each space and their average is used to generate the Peak Signal to 

Noise Ratio of the reconstructed RGB images. If the calculated value of MSE is low, it 

indicates that noise introduced due to processing is low; it is desirable as it results in 

good quality of processed image. If the calculated value of PSNR is high, it indicates 

that noise introduced due to processing is low; it is desirable as it results in good quality 

of processed image. 
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2.6.0 COMPRESSION DESIGN CRITERIA 

The compression of graphical data is useful for a variety of applications and 

each application imposes different design criteria and constraints on the compression 

schemes. There are many design constraints, few of them are: time, cost, information 

loss, and compression ratio [14]. These constraints vary according to application 

demands. For example, real time applications impose stiff constraints regarding time. If 

special purpose hardware is required for the application then it adds to the expenses. 

Some applications can tolerate loss of information, but in applications like bio-medical 

the loss of information cannot be tolerated. Many multimedia applications demand high 

compression ratio with compromising quality of information. As with almost any design 

task, tradeoff must be made between design constraints to meet cost and performance 

criteria.  

2.7.0 APPLICATIONS OF IMAGE COMPRESSION 

In today‟s modern era multimedia play an important role. As image is one of the 

important media of information it captures major focus in processing. For 

efficient/optimum utilization of storages-space and bandwidth, the image compression 

is desired. Applications of image compression are primarily in transmission and storage 

of information. Image transmission applications are in broadcast television, streaming 

videos, remote information sensing via satellite, and military communications via 

aircraft, radar and sonar, teleconferencing, video conferencing, remote medical 

consultation, desk-top publishing, computer communication and facsimile transmission. 

Image storage is required for educational and business documents, medical images that 

arise in Computer Tomography (CT), Magnetic Resonance Imaging (MRI) and digital 

radiology, motion pictures, satellite images, weather maps, geological surveys, and 

astronomy [14].  

2.8.0 IMAGE COMPRESSION METHODOLOGY  

There are various methods of compressing still images, but every method has 

three basic steps involved in any of the data compression scheme: Transformation, 

reduced precision (quantization or thresholding), and minimization of number of bits to 

represent the image (encoding). The basic block diagram of compression scheme is 

shown in figure 2.8.1. 
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Figure 2.8.1: The block diagram of compression scheme 

2.8.1 TRANSFORMATION 

The transformation block transforms the data set into another equivalent data set. 

For image compression, it is desirable that the selection of transform should reduce the 

size of resultant data set as compared to source data set. Few transformations reduce the 

number of data items in the data set. Few transformations reduce the numerical size of 

the data items that allows them to represent by the fewer binary bits. Many 

mathematical transformations exist that transform a data set from one system of 

measurement into another in such a way that the data can be represented by the small 

number of bits. In data compression, transform is intended to decorelate the input 

signals by transforming. The data represented in the new system has properties that 

facilitate the compression. Some mathematical transformations have been invented for 

the sole purpose of data compression; selection of proper transform is one of the 

important factors in data compression scheme. It still remains an active field of 

research. The technical name given to these processes of transformation is mapping 

[14]. Some mathematical transformations have been invented for the sole purpose of 

data compression, other have been borrowed from various applications and applied to 

data compression. The partial list includes: 

 Discrete Fourier Transform (DFT) 

 Discrete Cosine Transform (DCT) 

 Hadamard-Haar Transform (HHT) 

 Karhune-Loeve Transforms (KLT) 

 Slant-Haar Transform (SHT) 

 Walsh-Hadamard Transform (WHT) 

 Short Fourier Transforms (SFT) 

 Wavelet Transforms (WT) 

2.8.2 QUANTIZATION/THRESHOLDING  

There have been numerous methods proposed to perform quantization of the 

transformed coefficients. In the process of quantization each sample is scaled by the 

quantization factor. Where as in the process of thresholding the samples are eliminated 
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if the value of sample is less than the defined threshold value. These two methods are 

responsible for introduction of error and it degrades the quality. In image compression, 

introduction of the error degrades the visual quality of an image. The degradation is 

based on selection of quantization factor and threshold value. For the high value of 

threshold the loss of information is more, and for low value of threshold the loss of 

information is less. By considering the resultant loss of information, the selection of 

threshold should be low, but for the low value of the threshold there is negligible 

compression of data. Hence quantization factor, or threshold value should be selected in 

such a way that it should satisfy the constraints of human visual system for better visual 

quality, and high compression ratio. Human Visual System is less sensitive to high 

frequency signal and more sensitive to low frequency signal [22]. By considering this 

phenomenon, the threshold value or quantization factor is selected and thresholding / 

quantization take place in image compression.  

In image compression technique two types of thresholding are used as:  

 Hard Thresholding  

 Soft Thresholding.  

In hard thresholding technique, if the value of the coefficient is less than defined 

value of threshold, then the coefficient is scaled to zero, otherwise the value of the 

coefficient is maintained as it is. This process is repeated until all the pixels in the image 

are exhausted. 

In soft thresholding technique, if the value of the coefficient is less than defined 

value of threshold, then the coefficient value is scaled to zero and otherwise the value of 

coefficient is reduced by the amount of defined value of threshold. This process is 

repeated until all the pixels in the image are exhausted. 

Quantization/thresholding remains an active field of research. Prime objective of 

the research is to develop novel technique of image compression, wavelet packet best 

tree on the basis of energy contain with adaptive thresholding and lossy encoding. 

Details of proposed Image Compression techniques are covered in chapter 4. 

2.8.3 ENCODING 

 This phase of compression reduces the overall number of bits needed to 

represent the data set. An entropy encoder further compresses the quantized values to 

give better overall compression. This process removes the redundancy in the form of 

repetitive bit pattern in the output of quantizer.  It uses a model to accurately determine 

the probabilities for each quantized value and produces an appropriate code based on 
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these probabilities so that the resultant output code stream will be smaller than the input 

stream. The most commonly used entropy encoders are Huffman encoder and the 

Arithmetic encoder.  

Huffman Encoder 

 Huffman codes assign a variable length code to each possible data item, such 

that the values that occur most often in the data set have smaller length codes while the 

values that occur less frequently have longer length codes. Given the probability of 

occurrence of each individual data value, the Huffman algorithm can automatically 

create an appropriate code assignment for each data value. This method of encoding 

works, but in many cases it wastes coding capacity [23].  The other problem with 

Huffman encoding is that when a Huffman code exceeds the size of target data type 

there is a problem of overflow.  

Arithmetic Encoding 

 Arithmetic codes are based on sequences of data values. Instead of assigning a 

unique code to each individual data value, this scheme outputs a series of values that 

corresponds to unique sequence of data. The probability of occurrence of each 

individual data value is used to create the output codes. This scheme works well for 

incrementally encoding data. But there is potential for a loss of precision under certain 

circumstances [23].  

Run Length Encoding (RLE) 

The Run Length encoding is used in a process of compression to encode the data 

before the coding. Run-Length Encoding is a simple technique used to compressed runs 

of identical components in a data stream. RLE is a pattern recognition scheme that 

searches for the repetition of identical data values in the component array. The data set 

is compressed by replacing the repetitive sequence with a single data value and a count 

of the value. The compression ratio obtained from run-length encoding schemes, vary 

depending on the type of data to be encoded, and repetitions present within any given 

data set. Some data sets can be highly compressed by run-length encoding, whereas 

other data sets can actually grow larger due to the compression.  

The Huffman algorithm requires each code to have an integral number of bits, 

while arithmetic coding methods allow for fractional numbers of bits per code by 

grouping two or more such codes together into a block composed of an integral number 

of bits. This allows arithmetic codes to outperform Huffman codes, and consequently 

arithmetic codes are more commonly used in wavelet-based algorithm. 
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 2.9.0 LITERATURE SURVEY 

The rapid growth of digital image applications including desktop publishing, 

multimedia, teleconferencing, and High Definition Television (HDTV) has increased 

the need, for effective and standardized image compression techniques. Numbers of 

Image Compression methodologies have been presented over the years for performing 

image compression. These methods have one common goal to alter the representation of 

the information contained in an image, so that it can be represented sufficiently well 

with less amount of memory.  Still active research is going on for the perfection to 

match the technological advancements. The research of data compression started from 

the work of Shannon, Fano and Huffman in the late 1940, and technique is developed in 

1986 [24]. Shannon, Fano technique has an advantage of its simplicity. The source data 

and their probabilities are listed in order of non-increasing probability. This list is then 

divided in such way as to form two groups of as nearly equal total probability as 

possible. Each data in the first group receives zero as the first digit of its codeword; the 

data in the second half have codeword beginning with one. Each of these groups is then 

divided according to the same criterion and additional code digits are appended. The 

process is continued until each subset contains only one datum.  

The Discrete Cosine Transform (DCT) developed by Ahmed, Natrajan, and Rao 

[1974] was one of the transform used in image compression application; the DCT is a 

close relative of the Discrete Fourier Transform (DFT). Its application to image 

compression was pioneered by Chen and Pratt [1984] [2]. The Discrete Cosine 

Transform is a technique for converting a signal into elementary frequency components. 

It is widely used in image compression. During the 1980‟s and 1990‟s, Discrete Cosine 

Transform (DCT) based compression algorithm and international standard were 

developed to alleviate storage and bandwidth limitation imposed by digital still images 

and motion video applications [3]. Today there are three DCT-based standards that are 

widely used and accepted worldwide 

 JPEG (Joint Photographic Expert Group) 

 H.261 (Video codes for audiovisual Group) 

 MPEG (Motion Picture Expert Group) 

Each of these standards is well suited for particular applications: JPEG is for still 

image compression, H.261 is for video conferencing, and MPEG is for high-quality, 

multimedia systems [3]. 

The International Standard Organization (ISO) has proposed the JPEG standard 

for image compression. The JPEG standard defines a suite of data encoding for full 
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color and continuous-tone raster images. The JPEG standard includes four distinct 

modes of operation: [14] 

 Lossless JPEG 

 Sequential JPEG 

 Progressive JPEG  

 Hierarchical JPEG 

Lossless JEPG 

Lossless JPEG mode uses predictive (a form of differencing) compression 

scheme, and in the image reconstruction each row (scan line) is decoded, and is 

sequential displayed in full resolution. 

Sequential JEPG 

 Sequential JPEG mode uses Discrete Cosine Transform (DCT) compression 

scheme, and in the image reconstruction each row (blocks of 8 × 8 pixels) is decoded, 

and is sequential displayed in full accuracy and resolution. 

Progressive JEPG 

 Progressive JPEG mode uses Discrete Cosine Transform (DCT) compression 

scheme, and in the image reconstruction the entire image is decoded and displayed at 

the certain accuracy; and further decodings of the entire image add to this accuracy. 

Hierarchical JEPG 

 Hierarchical JPEG mode uses Discrete Cosine Transform (DCT) or predictive 

compression scheme, and in the image reconstruction image is decoded at a certain 

resolution, and further decodings at higher resolutions are added into the previous 

decodings to increase the resolution.  

  The Discrete Cosine Transform is closely related to the Discrete Fourier 

Transform (DFT), and allows data to be represented in terms of its frequency 

components. Similarly in image processing applications the two-dimensional DCT maps 

a picture or picture segment into its two dimensional frequency components [3]. The 

DCT transforms transfer a data set into the cosine-frequency domain. The values in the 

upper-left corner of the transformed data represent the lower-order frequencies while 

the values in the lower-right corner represent the higher-order frequencies. The low-

order frequency terms capture the essence of the data while the higher-frequency terms 

capture the fine details and noise. The DCT component at coordinates (0,0) is referred 

to as the DC bin, and all other components are referred to as AC bins. In JPEG method 

the original image is divided into square blocks of size M × M, where M is an integer of 
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size 8, 16, 32 etc. Generally M = 8 is preferred for image compression. Each block of 

size M × M is transformed to frequency domain using discrete cosine transform. The 

mappings of the DCT components are from lower to higher frequencies along the 

horizontal and vertical directions. To transform two dimensional frequency bins clusters 

packets of picture information is scanned using zigzag scanning, so that it includes the 

frequency components in increasing order as a one dimensional stream of bins [102].   

The resulting matrix is then processed in a quantization stage in which a user 

specified quality factor, usually between 1 and 100, is utilized to define quality matrix. 

The precision is reduced during encoding (i.e., the quantization process) by dividing 

each data value in the 8 x 8 block by a unique divisor that is stored in an 8 x 8 table. 

Mathematically the quantization step is simply a division operation. In the JPEG image 

compression standard, compression ratios can be adjusted by uniformly scaling the 

quantization matrix by a multiplicative factor, called the Q-factor. A higher Q-factor 

gives better compression but increased blockiness; a lower Q-factor gives better image 

quality but worse compression. The quantization matrix, however, is not defined by the 

standard but it is supplied by the user and stored or transmitted with the compressed 

image. Previous research on improving the visual quality of JPEG coded images for a 

given bit rate has concentrated on optimizing the quantization matrices for optimal 

visual quality [25]. However, the quantization matrix must be optimized for each 

individual image, which is very computationally intensive. Moreover, this technique 

does not consider the different activity levels across the image. Quantization is the 

primary source of data loss in DCT based image compression algorithms. Quantization 

reduces the amount of information required to represent the frequency bins. For 

simplicity, all the standard image compression algorithms use linear quantization, where 

the step size quantization levels are constant [3]. Quantization in the frequency domain 

has many advantages over directly quantizing the pixel values. This takes advantages of 

the fact that the human eye is less sensitive to high frequency visual noise, but is more 

sensitive to lower frequency noise. Therefore, the quantization factors are usually 

chosen to be larger for the higher frequencies as compared to the lower frequencies [3].  

It is in this stage that loss occurs as high frequency components of the matrix are in 

effect zeroed out. This stage is significant component of this compression technique, in 

that the user has the trade off the decision between file size and data loss. If quality 

factor is high then the compression ratio is high but it results in high image degradation, 

and if quality factor is low then the compression ratio is low but it results in better 

image quality [26]. 
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Entropy coding is a lossless compression scheme based on statistical properties 

of the picture or the stream of information to be compressed. Although entropy coding 

is implemented slightly different in each of the standards, the basic entropy-coding 

scheme consists of encoding the most frequently occurring patterns with the least 

number of bits. In, this manner, data can be compressed by an additional factor of three 

or four [3]. In JPEG standard the coding process is performed after the quantization. 

The quantized data is encoded by run-length encoding, which reduces repetition 

redundancy then it is coded using Huffman coding. To summarize JPEG image 

compression algorithm includes the following steps [3].  

1. Divide the image into the M × M blocks. 

2. Discrete Cosine Transform of each block 

3. Quantization 

4. Zigzag scanning 

5. Encoding 

6. Coding 

Each color component of still image is treated as separate gray-scale picture by 

JPEG. Although JPEG allows any color components separations; images are usually 

separated into Red, Green, Blue (RGB) or Luminance (Y), with Blue and Red color 

differences (U=B – Y, V=R – Y). Separation into YUV color components allows the 

algorithm to take an advantage of the human eye, which is lower sensitivity to color 

information. The U and V color components are recorded at lower bandwidth and sub-

sampled to one-half in horizontal dimensions (called 4:2:2), or one-half in both the 

horizontal and vertical (called 4:2:0) [3]. JPEG partitions each color components picture 

into 8 × 8 pixel blocks of image samples, and DCT is applied to each block .For 

quantization, JPEG uses quantization matrices. JPEG allows a different quantization 

matrix to be specified for each color component. Using quantization matrices allows 

each frequency bin to be quantized in different step size [3]. 

Debra A. Lelewer and Daniel S. Hirschberg [24] presented the Surveys Of 

Variety of Data Compression Methods, spanning almost forty years of research from the 

work Shannon-Fano and Huffman in the late 1940‟s to a technique developed in 1986. 

They discussed the concept of information theory, as related to the goals of evaluation 

of data compression methods. The framework for the evaluation and comparison of 

method was constructed and applied to the algorithm presented. Comparisons of both 

theoretical and empirical natures were reported related to both Shannon-Fano and 

Huffman mapping. 
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GuoCan Feng and Jianmin Jiang [25] presented Image Segmentation In 

Compressed Domain. They proposed a direct segmentation image algorithm in JPEG 

compressed domain. The algorithm featured in extracting statistical parameters from 

DCT coefficients without its inversed transform, and growing regions in line with JPEG 

compression seamlessly in blocks of 8 × 8 pixels. They claimed that, in comparison 

with latest research efforts in region based image segmentation, the proposed algorithm 

achieved significant advantages including: a) no iteration was involved; b) no full 

decompression was needed; and c) segmentation performance was competitive. Image 

segmentation can be mainly divided into two categories edge based approaches and 

region based approaches and all the segmentation techniques were developed in pixel 

domain, these techniques used for image compression were time consuming and 

insufficient to overcome this problem. Researcher proposed direct segmentation in DCT 

domain for JPEG compressed images would have the advantage that any necessity of 

decompression could be eliminated. This property would greatly reduce the 

computational cost. Authors concluded that their algorithm had additional advantages 

over the existing one due to the fact that the proposed segmentation was directly carried 

out in compressed domain rather than in pixel domain, and no iteration was involved in 

the process of segmentation. 

David Jeff Jackson and Sidney Joel Hannah [26] presented the Comparative 

Analysis of Image Compression Techniques. This paper addressed the area of data 

compression as it was applicable to image processing. Analyses of several image 

compression strategies were examined for their relative effectiveness. Several topics 

concerning image compression were examined in this study including generic data 

compression algorithms, file format schemes, and fractal image compression. An 

overview of the popular LZW compression algorithm and its subsequent variations was 

also given. A survey of several common image file formats was presented with respect 

to the differing approaches to image compression. Fractal compression was examined in 

depth to reveal how an interactive approach to image compression was implemented. 

While both the GIF and JPEG techniques were standardized, the potential for further 

research in the fractal compression area was great. They concluded that it was possible 

to take the advantage of large compression ratio achieved from fractal compression and 

produced trade-off of compression ratio for information loss.  

Lena Chang, Ching-Min Cheng and Ting-Chung Chen [27] presented An 

Adaptive KLT Algorithm For Multi-Spectral Image Compression. The KLT (Karhunen-

Loeve Transform) converted discrete signals into a sequence of uncorrelated 
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coefficients. The transformation was developed on the basis of statistical properties of 

the signal. It was also known as Hotelling transform, and it was widely used in data 

compression. KLT minimized the MSE for any input image, and any number of retained 

coefficients. In their paper authors proposed the algorithm, which was fully exploiting 

the spectral and spatial correlation in the data. KLT algorithm could divide the original 

image into some proper regions and transform each region image data set by 

corresponding transformation function. The algorithm was suited for hardware 

implementation. They claimed that more the small region size, the more efficient was 

the spectrally decorrelation process. But the drawback with the selection of small region 

size was reselecting increase in the overhead bit rate due to an increase in the number of 

regions. The proposed Adaptive Variable Region KLT algorithm could determine a 

proper region for different local terrain characteristics of image, and corresponding KLT 

transformation was adapted for each extracted terrain region. 

Salih Burak Gokturk, Carlo Tomasi, Bernd Girod and Chris Beaulieu [28] 

presented Medical Image Compression Based on Region of Interest, With Application to 

Colon CT Images. They discussed a hybrid model of lossless compression in the region 

of interest with high rate lossy compression in other regions. In this method the image 

was segmented through a sequence of two dimension morphological image processing 

techniques. Then motion vectors were coded for each block of the image. Finally the 

error between the real image and the motion predicted image was coded for Region of 

Interest (ROI) blocks. With the experiment on CT abdomen images with the colon wall 

as ROI, researchers claimed that a compression rate of 2.5% could be obtained.   

Jeffrey C. Wehnes, Hung-Ta Pai and Alan C. Bovik [29] presented Fast Lossless 

Compression. This paper presented a simple algorithm for fast lossless compression of 

gray scale images. It consisted of differential pulse code modulation followed by 

Huffman coding of the most likely residual magnitudes. The authors claimed that this 

algorithm gave higher compression with less computation than the lossless JPEG 

method. They further claimed that for the large dynamic ranges possible with pixel sizes 

greater than eight-bits, it required significantly less computation than any peer 

compression schemes. 

Marcelo J. Wienberger, Gadiel Seroussi and Guillermo Sapiro [30] presented 

The LOCO-I Lossless Image Compression Algorithm: Principles and Standardization 

into JPEG-LS. Low Complexity Lossless Compression for Images (LOCO-I) was 

algorithm at the core of ISO/ITU standard for lossless and near lossless compression of 

continuous tone images, JPEG – LS. It was based on simple fixed context model, which 
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approaches the capability of the more complex universal techniques for capturing high 

order dependency. Lossless data compression scheme often consisted of two distinct 

and independent components modeling and coding. Modeling part could be formulated 

as an inductive inference problem, in which the data (image) was observed sample by 

sample in some predefined order. LOCO-I was systematically projecting the image 

modeling principles outlined and further developed into a low complexity plane both 

from a modeling and coding perspective. 

Marcia G. Ramos and Shelia S. Hemami [31] presented Edge Adaptive JPEG 

Image Compression. The quantization was one of the important phases in the method of 

image compression. The quantization factor changed with step with respect to spectral 

distribution in an image. The quantization step sizes were adapted to the active level of 

the block, and the activity selection was based on edge driven quad tree decomposition 

of the image. It was claimed that the proposed technique achieved higher visual quality 

than standard JPEG compression at the same bit rate and reduced the mosquito noise in 

the frames. Mosquito noise was the high frequency temporal noise that appeared in the 

low bit rate videos. The proposed method required a very small over-head (an average 

of 0.0035 bpp for 512 × 512) compared to JPEG data string by coding the quad tree 

efficiently.  

Hiroshi Kondo and Yuriko Oishi [32] presented Digital Image Compression 

Using Directional Sub-Block DCT. The proposed technique gave reconstruction image 

with lower block artifact (noise), even if a low bit rate coding was applied. In this 

technique, signs and amplitudes of DCT coefficients were processed separately. 

Amplitude of DCT coefficients belonging to one of the sub-block, which was predicted 

from those of one the former four neighbors‟ sub-blocks and the prediction errors were 

coded. The one of four neighbor sub-blocks was chosen by a minimum mean square 

error technique. The indications of the chosen sub-block and DCT signs were coded by 

an arithmetic coding. The picture quality of the reconstructed image was always better 

than that received by an ordinary JPEG method. The authors concluded that the 

proposed method came from JPEG one but the resulting coded image was always 

superior to the ordinary JPEG one. It meant that the correlation direction index was 

effective for one step vector prediction. The sequence of the index numbers was coded 

by an arithmetic coding method, which was well known as the best entropy coding one.  

 Mitchell A. Golner, Wasfy B. Mikhaei, Arun Ramaswamy and Venkatesh 

Krishnan [33] presented Region Based Variable Quantization For Jpeg Image 

Compression. This paper was based on region based variable quantization JPEG 
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software codec that was developed, tested, and compared with other image compression 

techniques. They proposed, the quantization matrix was global to the entire image, 

scaling factors was chosen on block-to-block basis to achieve varied degrees of 

quantization for different regions of the image. This method was implemented for DCT 

coefficients. The region selection could be performed manually or automatically 

according to predetermined requirements. The authors concluded that pattern 

recognition techniques could be used to identify areas containing color and geometry 

that meet certain criteria. They indicated that future might also focused on the 

development of an objective perceptual measurement that could provide effective 

feedback for achieving high compression and maximum overall perceptual quality.   

The number of researchers pursued the research based on DCT technique in the 

domain of image compression. Few researchers noticed shortcomings of DCT 

technique. As DCT is one of the phases in JPEG compression it affects the overall 

compression. Although the JPEG methods are efficient, the blocking noise (artifact) 

appears in the resulting image. The blocking noise on an image makes the picture 

quality degenerate especially for our human eyes [9]. Further research work has been 

done on still image compression and JPEG-2000 standard is established in 1992 and 

work on JPEG-2000 for coding of still images had been completed at end of year 2000 

[1].  

The upcoming JPEG-2000 standard employs wavelet for compression due to its 

merits in terms of scalability, localization and energy concentration [1, 34]. It also 

provides the user with many options to choose to achieve further compression. A JPEG-

2000 standard support decomposition of all the sub-bands at each level and is hence 

requires full decomposition at a certain level even though that may not be necessary. 

G. F. Fahmy, J. Bhalod and S. Panchanathan [34] presented A Joint 

Compression and Indexing Technique in Wavelet-Compressed Domain. The authors 

proposed a new technique for joint compression and indexing in the wavelet domain. In 

the proposed technique, the wavelet-decomposed image was first preprocessed to 

extract features, which were then used for compressing the image as well as for deriving 

the indices. The wavelet decomposition structure is the regular dynamic tree. The low 

level features are extracted from the wavelet-decomposed image. Typically these 

features include shape, texture and color. The extracted features are used for 

compressing the image as well as for deriving the indices. A dominant channel profile 

based on the relative energy of each band is used as feature for indexing. The results 
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demonstrated significant coding gains using the proposed approach at a similar retrieval 

performance.  

E. Yeung  [35] presented Image Compression Using Wavelets. The author first 

introduced the theory behind the wavelet transform and overviewed the implementation 

of the wavelet image compression. Both quantitative and subjective evaluations were 

performed on images compressed with the wavelet compressor. The author concluded 

that wavelet compression was better choice over JPEG compression. 

Sonja Grgic, Kresimir Kers, Mislav Grgic [36] presented Image Compression 

Using Wavelets. This paper provided the fundamentals of wavelet based image 

compression. The options for wavelet image representation were tested. The results of 

image quality measurements for different wavelet function, image contents, 

compression ratio and resolutions were given. They discussed in detail the selection of 

wavelet family depended on application. In image compression application the choice of 

wavelet selection depended on image content. They concluded that, although JPEG 

processing speed and compression ratio were good, there were noticeable blocking 

artifacts at high compression ratios. However there were no blocking effects at all in 

reconstructed images by wavelet-based methods. They further mentioned that the 

proposed simple and fast compression scheme based in Discrete Wavelet Transform 

(DWT) provided better results than standard JPEG especially for higher compression 

ratio and predicted the progress in research for years to come.  

Tao Yu, Anthony Tung-Shuen Ho, Siu-Chung Tam, Siong-Chai Tan and Lian-

Teck Yap [37] presented A Novel Hybrid Bi-Orthogonal Wavelets / ADPCM Algorithm 

For Very Low Bit Rate Satellite Image Compression. The paper discussed an overview 

of remote sensing image compression using wavelet transform. The authors first 

described the wavelet properties that were most important for image compression. The 

method of constructing by orthogonal wavelet and their finite impulse response (FIR) 

filter bands was presented. Then the adaptive differential pulse code modulation 

(ADPCM) algorithm was presented for very low bit rate satellite image compression. 

They discussed that ADPCM technique could achieve high compression ratio for only at 

low bit-rate satellite image compression. They claimed that by using wavelet transform 

and combination of vector quantization and ADPCM, they could achieve very low bit 

rate compression and blocking efforts in satellite images were also minimized. The 

authors concluded that by using this method high compression ratio could be achieved 

by maintaining high degree image quality.  
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Christos Chrysafis and Antonio Ortega [38] presented Line-Based, Reduced 

Memory, Wavelet Image Compression. The authors presented a complete system to 

perform the low memory wavelet image coding. Their approach was line based, in that 

the images were read line by line, and only the minimum required number of lines were 

kept in memory. The main contribution of their work was, firstly they introduced a line 

based approach for the implementation of the wavelet transform, and then they 

proposed a novel context based encoder which require no global information, and stored 

only a local set of wavelet coefficients. This low memory coder achieved performance 

comparable to state-of-the-art coders at a fraction of their memory utilization. They 

claimed that the method offered the significant advantage by making a wavelet coder 

attractive both in terms of speed and memory needs. 

Y. Li and C. Moloney [39] presented SAR Image Compression using wavelet 

Transform and Soft Thresholding Synthetic. The authors mentioned that Synthetic 

Aperture Radar (SAR) Image Compression is important in image transmission and 

archiving. Their studies showed that the speckle noise which is inherent in SAR 

imaging system, is also an obstacle to image compression. In order to improve the 

reconstructed image quality, and to increase the compression efficiency, the wavelet 

domain soft-thresholding technique was implemented to reduce the speckle noise before 

compression was performed. The authors concluded that the proposed algorithm could 

remove most of the speckle noise, and improved the compression performance. 

 V. N. Ramaswamy, K.R. Namuduri and N. Rangnathan [40] presented Lossless 

Image Compression Using Wavelet Decomposition. The authors proposed lossless 

image compression scheme using wavelet decomposition. In the first scheme the 

approximated wavelet coefficient were encoded using variable block size segmentation 

algorithm, and the detail signals were encoded using directional predication and 

categorization. The residual error due to the finite precision arithmetic was significant, 

and was encoded using adaptive arithmetic encoding technique. In the second scheme 

authors proposed a new concept of multi-resolution, which avoided the finite precision 

arithmetic errors. The approximated image, in the scheme was a decimated version of 

the original image instead of the image being convolved with low pass filter and then 

decimated (along x and y direction). The performance of the proposed scheme was 

comparable to that exhibited by JPEG lossless schemes, and out perform the Huffman, 

the Lempel-Ziw, and the Arithmetic. The authors concluded that they have found that 

the wavelet filter should increase smoothness in the image and yet posses the perfect 

reconstructed property with compact support. 
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Julien Reichel, Gloria Menegaz, Marcus J. Nadenau, Murat Kunt [41] presented 

Integer Wavelet Transform For Embedded Lossy To Lossless Image Compression. This 

topic was investigated in a theoretical framework. The authors proposed a model of the 

degradations caused by the use of Integer Wavelet Transform (IWT) instead of the 

Discrete Wavelet Transform (DWT) for lossy compression. The rounding operations 

were modeled as additive noise. The noises were then propagated through the lifting 

scheme structure to measure their impact on the reconstructed pixels. This methodology 

was verified using simulation with random noise as input. It predicted accurately the 

results obtained using images compressed by the well-known algorithm like Embedded 

Zerotree Wavelet (EZW). Experiments were also performed to measure the difference 

in terms of bitrate and visual quality. The use of Mean Square Error (MSE) showed 

significant difference between the two approaches. The IWT could lead too much larger 

degradation than the DWT, especially for small quantization steps, that is small 

compression factor. It was noticed that IWT and DWT were equivalent for large 

compression ratio in both MSE and visual quality point of view.  

 Chrostos Chrysafis and Antonio Ortega [42] presented Efficient Context-Based 

Entropy Coding For Lossy Wavelet Image Compression. The authors presented an 

adaptive image-coding algorithm based on novel backward adaptive 

quantization/classification techniques. They used a simple uniform scalar quantizer to 

quantize image sub-bands. Their algorithm put each coefficient into one of the several 

classes depending on the values of neighboring, previously quantized coefficients. 

These previously quantized coefficients formed context, which were used to 

characterize the sub-band data. To each context type, corresponded a different 

probability model, and thus each sub-band coefficient was compressed with an 

arithmetic coder, having the appropriate model depending on that coefficient‟s 

neighborhood. They showed the context selection could be driven by rate distortion 

criteria, by choosing the context in a way that the total distortion by given bit rate was 

minimized. They concluded the potential benefits of this method compared to then 

existing methods with respect to speed and simplicity.  Also by choosing fine enough 

quantization, they expected the same algorithm could be used for lossless compression.  

Jiaming Li and Jesse S. Jin [43] presented An Image Coding Method of High 

Compression Rate And Clarity Preserving. The authors presented an image 

compression scheme based on wavelet transform and the Human Visual System (HVS) 

was proposed. They discussed the evaluation criteria of the image quality. It is clear that 

Human eyes are more sensitive to noise in low frequency than to noise in high 
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frequency. So they suggested that they should give smaller quantization step to low 

frequency WT coefficients, and bigger quantization step to high frequency WT 

coefficients. It would give the minimum annoying effects over the reconstructed effects 

for human observer. The main purpose of their research was to design a quantizer for 

WT coefficients, which took into account the relative importance of different 

coefficients to the human visual perception, and minimized noise introduced in 

quantization. In the proposed method, authors developed an efficient perceptual 

quantization method by minimizing a specially selected quantization noise function, 

which was perceptually weighted, based on experimental research on the special–

frequency response of the human visual system. Compared with pervious human visual 

perception based image compression methods, the proposed method showed improved 

image quality for the same compression ratio.  

Maria Grazia Albanesi [44] presented Wavelets and Human Visual Perception in 

Image Compression. The author described a new adaptive coding technique for still, 

gray level images. The proposed algorithm was based on a multi-resolution 

decomposition on bi-orthogonal wavelet basis, and it included different non-linear 

models of the human visual perception in the compression task. Quantization was 

adaptive, and it was based on both global and local considerations about the contrast 

sensitivity. The author applied a non-linear filtering F(u) to the intensity image, three 

expressions of  F(u) were tested. F(u) = u, F(u) = log (u) and F(u) = u
0.33

 and then the 

wavelet decomposition was applied. The author concluded that for high contrast images, 

introduction of the non-linear part of the Human Visual System (HVS) model improved 

the performance. The performance of the algorithm for high contrast image was better 

for the case F(u) = u
0.33

 , but for high compression ratio the case F(u) = log (u) 

performed better. 

Dorota Biela-Wiraszka [45] presented Two-Stage Approach To Image 

Compression Using Wavelet And Piecewise Linear Transforms. The author presented, 

the new approach to image compression, using wavelet and piecewise linear wavelet 

transforms. For effective compression performance, an image of given class was first 

modeled by the compression algorithm, to generate some intermediate representation of 

image depending on the chosen method of compression. The attention has been 

concentrated on the step of modeling, where the two-stage transformation was used to 

generate the intermediate representation of the image. Firstly the original image was the 

wavelet transform to obtained a pre-intermediate representation, consisting of four sub-

images, being the result of spatial low pass and high pass filter. At this stage the zonal 
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sampling was performed and only the low pass filtered sub-image was kept. During the 

second stage the pre-compressed image was transformed by using the periodic walsh 

Piecewise Linear Transform (PWL). It produced the PWL spectrum of the former 

representation, then compressed by the threshold compression scheme and the final 

intermediate representation of the image was obtained. Reconstruction of the original 

image required similar two-stage decompression processed, first the inverse PWL 

transform was calculated and then the intermediate reconstruction was transformed by 

the inverse wavelet transform. This technique provides a better compression ratio but 

high frequency components are lost. 

A. P. Beegan, L. R. Iyer, A. E. Bell, V. R. Maher, and M. A. Ross  [46] 

presented Design And Evaluation Of Perceptual Masks For Wavelet Image 

Compression. The authors presented, a new HVS technique in the form of perceptual 

weighting masks derived from the luminance contrast sensitivity function and illustrates 

their performance for gray scale, and color images using bi-orthogonal wavelet 

transforms. In this paper, authors described, and evaluated four new methods for 

generating perceptual weighting mask using Constant Sensitivity Function (CSF), and 

its Discrete Wavelet Transform (DWT). The masks were based on the luminance and 

not on the thresholds. They suggested that peak Constant Sensitivity Function (CSF) 

mask with six unique weights (1, 4.6, 6.54, 6.54, 5.22, 2.20). They further developed a 

subjective image quality testing procedure for expert and non-expert observers; a 

comparison of qualitative and quantitative result was presented. They claimed that their 

algorithm improved both peak signal to noise ratio and subjective quality for color 

images, and grayscale images. A model of the contrast sensitivity function for 

luminance images originally proposed by Mannos and Sakrison is given by 

  e . 0.114f)  (0.00192 2.6  H(f) ]0.114f) ( [- 1.1

           --- 2.9.1 

Where spatial frequency 2/122 )( yx fff    

The proposed method when used on gray scale images resulted in decrease in 

PSNR, however it increased in PSNR for color images. 

Olivier Rioul [47] presented On The Choice of Wavelet Filters For Still Image 

Compression. The author presented simple compression scheme using orthogonal 

separable wavelet transforms, scalar quantization, rate/distortion optimization, various 

coding criteria, and large number of wavelet filters with balanced regularity, frequency 

selectivity and phase. The paper investigated the usefulness of several filter properties 

in a simple image compression scheme using DWT implemented as an octave band tree 
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filter bank allowing perfect reconstruction. In order to provide a fare comparison of 

compression result for different filters, author used an optimization procedure based on 

wavelet packets, which selected the best set of quantizer for each sub image and the 

based number decomposition levels, which minimized the overall distortion at the 

reconstruction.  

S. Phimoltares, K. Chamnongthai and C. Lursinsap [48] presented Hybrid 

Binary Image Compression. The authors proposed new lossless binary image 

compression-processing scheme, which increased local redundancy for more 

compression efficiency. The algorithm consisted of reordering rows and columns of 

image data for assembling data that has some values 0 or 1, merging the data to reduce 

the redundancy, encoding data to bit stream, then the encoded data would be 

compressed by other image compression algorithms. They claimed that, this hybrid 

algorithm produced smaller compressed images than other algorithms by compromising 

the execution time. The extra time overhead was due to the reordering process.  

Amir Averbuch, Danny Lazar, Moshe Israen [49] presented Image Compression 

Using Wavelet Transform And Multi-resolution Decomposition. The authors presented 

the compression method, which was based on Vector Quantization (VQ) applied on the 

wavelet coefficients resulting from the wavelet transform of the trend images, using the 

pyramidal multi-resolution architectures. Vector quantization uses a dictionary (code 

book) of pixel patterns. The wavelet coefficients were partitioned into small pixel block 

and each block was encoded as reference to the dictionary pattern, which most 

resembled the block. The authors used vector quantization using the LGB algorithm.  

They claimed that the compression using vector bit allocation yielded the high 

compression ratio and good PSNR.  

Surya Peramraju, Sunanda Mitra [50] presented Efficient Image Coding Using 

Multiresolution Wavelet Transform And Vector Quantization. The authors presented the 

compression method, which was based on adaptive Vector Quantization (VQ) applied 

on the wavelet coefficients resulting from the wavelet transform of the trend images, 

using the pyramidal multi-resolution architectures. The adaptive vector quantization 

algorithm proposed used wavelet decomposition as a preprocessing stage for 

quantization as this mapping put the image in the form of a smooth image, which was 

much smaller in size than the original image, and several error sub-images that could be 

represented by lesser number of bits. The adaptive vector algorithm used a neuro-fuzzy 

clustering technique for optimizing the distortion measure. The fuzzy approach formed 
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the basis for accurately optimizing each code vector. They claimed that adaptive vector 

quantization algorithm outperformed LGB vector quantization.  

Mohamad A. El-Sharkawy, Christian A. White, Harry Gundrum [51] presented 

Sub-band Image Compression Using Wavelet Transform And Vector Quantization. The 

authors proposed an algorithm, which incorporated a fast tree structure quantization 

scheme, and partial search vector quantization. The algorithm described in this paper 

was that a novel quantization thresholding scheme, which used the DWT to decompose 

an image into octave wide frequency bands, then quantized the coefficients using a 

“look ahead” measurement of the image based on the low frequency sub-image inherent 

in the DWT. This algorithm then used vector quantization to code the thresholded 

coefficient of the decomposed image. Using sorted table of the energy content of the 

code vector used the partial search vector quantization algorithm to increase the speed 

of the quantization. The authors claimed that the results obtained by implementing this 

algorithm were comparable to the results obtained by those in literature using sub-band 

coding.  

Olga Kosheleva, Vladik Kreinovich, and Hung T. Nguyen [52] presented On the 

Optimal Choice of Quality Metric In Image Compression.  The authors presented, the 

metrics describing the distance between the two images; original image and compressed 

image, was known as quality metrics. They discussed the general class of quality 

metrics and selection of best value of the parameter p, depending on the image. The 

authors suggested that the value of this suggested quality metrics for the compression 

method should be as small as possible.  In this paper they showed that under certain 

reasonable symmetry conditions, L
p
 metrics dxxIxIIId

p

  )()(),(
~~

 were the best, and 

that the optimal value of p could be selected depending on the expected, related size r of 

the informative part of the image. They claimed that the natural way to select an optimal 

scheme was to select the scheme for which the average value of the quality metrics 

should be the smallest possible one. 

Armando J. Pinho [53] On The Impact of Histogram Sparseness on Some 

Lossless Image Compression Techniques.  The author presented, the problem of 

degradation of the compression performance that was verified in state-of-the-are 

lossless compression technique, such as JPEG-LS, and JPEG-2000, when handling 

images having spars histograms. He presented result, showing that histogram packing 

could provide important improvement in compression ratios. Finally he proposed a 
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simple procedure for online histogram packing, which held nearly the same 

improvement as offline histogram packing. 

Armando J. Pinho, and Antonio J. R. Nevws [54] presented Improvement Of The 

Lossless Compression Of Images With Quasi-Sparse Histograms. The authors first 

addressed the problem with offline histogram packing. In offline histogram packing, 

even if most of the intensity values occurred only ones or just a few number of times in 

the image, they would be considered by the offline histogram packing technique as 

having equal importance as those that occurred most frequently. In other words, images 

having quasi-spars histograms could not benefit from this method. The proposed 

method was also offline, but work using a reduced set of symbols. The authors claimed 

that the proposed method provided globally better method than the normal offline 

packing. 

Paulo J. S. G. Ferreira and Armando J. Pinho [55] presented Histogram Packing, 

Total Variation And Lossless Image Compression. The authors presented, the 

preprocessing technique for image compression. The state-of-the-art lossless image 

compression methods, such as JPEG–LS, and lossless JPEG-2000 performed 

considerably better on images with spars histogram, when preprocessing technique was 

used. In this paper authors addressed the preprocessing issue, and attempted to explain 

how, the preprocessing stage, which basically packed the histogram of the images, 

affected the image‟s total variation, and as a result the ability of the compression 

algorithms to work more efficiently. The graphical textual images do not use the 

complete set of available intensities (of color tones of gray) that is the histogram of the 

intensities is sparse. For such image this preprocessing technique was proposed. In this 

technique before coding, the image was subjected to transformation T, which packs its 

histograms. To recover the original image, the inverse transformation T
-1 

was applied to 

the decoded image. The packing transformation reduces the total variation of the image, 

yielding an image of smaller total variation, easier to compress.  

Jinwen Tian, Su Kang, Jian Liu and Qian Gao [56] presented A novel Image 

Compression Encoding. The authors presented the new adaptive image compression 

method based on wavelet transform, bit image compression, fractal iteration, and 

Huffman code. And suggested a novel technique of image compression, which included 

bit image compression, wavelet transform, fractal iteration and Huffman code. In the 

first stage, segmentation of the original image to bit image was carried out, different bit 

image in different bit digit was obtained, then the entropy of each bit image was 

calculated, and it was determined whether to compress the bit image by some criterion, 
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after that the image of bit compression was preserved. In the second stage, wavelet 

transform was applied. In next stage fractal was used, and lastly Huffman coding was 

used for coding. The authors claimed that the proposed method was better than the 

bitmap wavelet and fractal image compression methods. 

Miroslav Galabow [57] presented Fractal Image Compression. The author 

presented the new technique of image compression using fractal. A fractal is a structure 

that is made up of similar forms and pattern, which occur in many different sizes. 

Fractal encoding is a mathematical process used to encode the bitmaps containing a real 

world images as a set of mathematical data. The fractal encoding is largely used to 

convert bitmap images to fractal codes. Fractal decoding is just the reverse in which a 

set of fractal codes is converted to a bitmap. The encoding process is extremely 

computational intensive, millions or billions of iterations are required to find the fractal 

patterns in an image, but decoding a fractal image is a much simpler process. This has 

the ability to scale any fractal image up/down in size without the introduction of the 

image artifacts, or a loss in details, that occurs in bitmap images. Images with high 

fractal content, result in much higher compression ratio than images with low fractal 

content. Because of the variation in time of encoding and decoding the image, fractal 

compression technique is suited and only used in image databases and CD-ROM 

applications. 

I. Andreopoulos, Y.A. Karayiannis and T. Stouraitis [58] presented A Hybrid 

Image Compression Algorithm Based on Fractal Coding and Wavelet Transform. The 

authors presented, a novel algorithm for very high compression of images. First of all 

the image was decomposed through a wavelet transform. Then the low frequency part of 

the decomposed image was coded by using a near lossless method, while the rest of 

image was coded by using a fractal coding techniques. In addition, two classification 

methods were applied sequentially: geometric classification and luminance 

classifications. The authors claimed that this fast novel algorithm achieved good image 

compression quality at very high compression ratios. At these levels of compression it 

outperformed the JPEG standard. 

Geoffrey M. Davis [59] presented A Wavelet-Based Analysis of Fractal Image 

Compression. The author presented the new wavelet based framework for analyzing 

block based fractal compression scheme. Within this framework authors were able to 

draw upon insides from the well established, transform coder paradigm in order to 

address the issue of “why fractal coders work?” The author examined the generalization 

of the scheme to smooth wavelets with additional vanishing moments. This framework 
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gave new insight into the conversions properties of fractal block coders, and led them to 

develop an unconditionally convergent scheme with the fast decoding algorithm. The 

algorithm with fractal block coders had drawbacks, that the coders possessed no control 

over the code book, code words are too densely clustered around the very common all 

zero sub-tree and too sparsely distributed elsewhere, this dense clustering of near zero 

trees increased code word cost, but contributed very little to image fidelity. The main 

advantage enjoyed by using this algorithm was the ability to efficiently represent the 

zero trees.  

Vania Cordeiro Da Silva and Joao Marques De Carvalho [60] presented Image 

Compression Via TRITREE Decomposition. The authors presented the new method of 

image compression, using TRI-TREE decomposition (TT). TT decomposition was 

similar to the Quadtree Decomposition (QT), which had been broadly used by image 

processing algorithms, mainly for segmentation and compression. However, while QT 

subdivided the image into progressively smaller quadratic regions, TT decomposition 

subdivided the image in triangular region. The goal was to segment the image into a set 

of triangular homogeneous regions, where the differences among the pixel values didn‟t 

exceed the certain threshold. A tree was built to represent the decomposition. Each 

triangle would be the node of the tree TT. The initial triangle, that contained the whole 

image, was the root of the tree. The final triangle represented in the compressed image, 

where the leaves of the tree. Reconstruction of the image was accomplished by planer 

interpolation among the vertices of each triangle leaf. The authors claimed that the TT 

could produce higher PSNR and compression rate in comparison with QT. 

Axel Van De Walle [61] presented Merging Fractal Image Compression And 

Wavelet Transform Methods. The author presented, the method with the advantage of 

the approach, was to significantly reduce the tiling artifacts: operating in wavelet space 

allowed range blocks to overlap without introducing redundant coding. Fractal image 

compression and wavelet transform methods could be combined into a single 

compression scheme by using an iterated function system, to generate the wavelet 

coefficient. The scheme also permitted reconstruction in a finite numbers of iterations, 

and let to relax conversion criteria. The author concluded by mentioning the properties 

of new developed scheme such as: tiling effect was overcome; reconstruction was 

achieved in a finite number of steps; efficient indices of the domain blocks could be 

easily computed from the low frequency wavelet coefficients; it simply reduced to 

conventional fractal compression. 
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Sunanda Mitra, Rodney Long, Surya Pemmaraju, Richard Muyshondt, and 

George Thoma [62] presented Color Image Coding Using Wavelet Pyramid Codes. The 

authors presented the suitability and requirement of further development of wavelet 

pyramid coding in compressing color images, specifically the color visible human 

digital photographic data set. The distinct advantages of the newly developed adaptive 

Vector Quantization (VQ) over commonly used scalar quantization, and conventional 

VQ of the wavelet-decomposed error pyramids were also discussed. The paper 

demonstrated the feasibility of applying wavelet pyramid coding using adaptive vector 

quantization for visible human color data set, and thus showed the possibility of the 

compression, and other large color data set such as satellite images for easy and cost 

effective storage and transmission. 

Armando Manduca, and Amir Said [63] presented Wavelet Compression Of 

Medical Images With Set Portioning In Hierarchical Trees. The authors presented, a 

novel scheme for encoding wavelet coefficients, termed Set Partitioning In Hierarchical 

Trees (SPIHT). The SPIHT technique is also based on a wavelet transform, and differs 

from conventional wavelet compression only in how it encodes the wavelet coefficients. 

SPIHT is based on the three principles i) exploitation of hierarchical structure of the 

wavelet transforms by using a tree-based organization of the coefficient ii) partial 

ordering of the transformed coefficients by magnitude and iii) ordered bit plane 

transmission of refinements bits for the coefficients values. The SPIHT algorithm 

maintains the lists of insignificant sets, insignificant pixel, and significant pixel, and is 

initialized with list of insignificant sets being the sets of the sub-tree descendant of the 

each such node. In a sorting pass, the algorithm works its way down the list of 

insignificant pixels first, testing their magnitude against the current threshold, outputting 

their significance, and when one is significant, outputting its sign and moving it to the 

list of significant pixels. Then it moves through the list of insignificant list of the sets, 

performing the magnitude test to all the coefficients in the current sets. This algorithm 

SPIHT can be used with any wavelet on sub-band transform. The authors claimed that 

the result of proposed algorithm was of highest quality and the differences were quite 

significant compared to JPEG, and standard wavelets. 

Fredrick W. Wheeler, and William A. Pearlman [64] presented Low-Memory 

Packetized SPHIT Image Compression. The authors presented the SPIHT image 

compression algorithm with modification for applications to the large images with 

limited processor memory. The sub-band decomposition coefficients were partitioned 

into a small tree-preserving spatial block, which were each independently coded using 
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the SPIHT algorithm. The bits streams for each spatial block were assembled into a 

single final bit stream through the packetization scheme. The authors concluded that the 

SPIHT encoding and decoding of the special blocks could be done parallel for real time 

video compression saving the resources. 

Jerome M. Shapiro [65] presented Embedded Image Coding Using Zerotrees of 

wavelet Coefficients. The author presented embedded Zerotree Wavelet Algorithm 

(EZW) as a simple, yet remarkably effective, having the property that the bits in the bit 

stream were generated in the order of importance, yielding a fully embedded code. The 

embedded code presented a sequence of binary decisions that distinguish an image from 

the null image. Using an embedded coding algorithm, an encoder could terminate the 

encoding at any point their by alloying the target arte or target distortion metric to be 

made exactly. Also, given a bit stream, the decoder could cease a decoding at any point 

in the bit stream and still produced exactly the same image that would have been 

encoded at the bit rate corresponding to the truncated bit stream. The EZW algorithm 

was based on four key concepts: i) a discrete wavelet transform or hierarchical sub-band 

decomposition ii) prediction of the absence of significant information across scales by 

exploiting the self-similarity inherent in images, iii) entropy coded successesive 

approximation quantization, and iv) universal lossless data compression, which was 

achieved via adaptive arithmetic coding. The zerotree data structure works on the 

following principle. 

A wavelet coefficient x is said to be insignificant with respect to a given 

threshold T, if |x| < T. The zerotree is based on hypothesis that, if a wavelet coefficient 

at a coarse scale is insignificant with respect to a given threshold T, then all wavelet 

coefficient of the same orientation in the same spatial location at finer scales are likely 

to be insignificant with respect to T. Empirical evidence suggests that this hypothesis is 

often true. The authors claimed that the compression performance of this algorithm was 

competitive with virtually all known techniques. The precise rate control that was 

achieved with this algorithm was a distinct advantage.  

Jayshree Karlekar, P. G. Poonacha, and U. B. Desai [66] presented Image 

Compression Using Zerotree and Multistage Vector Quantization. The authors 

presented, new algorithm that provided good quality of reconstructed images at very 

low bit rates. The algorithm used successive approximations quantization of both 

scalars, and vectors on wavelet coefficients of the image. The successive-approximation 

quantization of scalars and vectors was done using EZW and MSVQ algorithms 

respectively. EZW algorithm was applied to wavelet coefficients belonging to coarser 
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level sub-bands, and MSVQ was applied to vectors of wavelet coefficients belonging to 

finer level sub-bands. The proposed method further used static Huffman coding to 

achieve more compression. The basic idea of multistage vector quantization (MSVQ) 

was to divide the encoding task into successive stages, where the first stage performed 

relatively crude quantization of the input vector using a small codebook. Then, a second 

stage quantizer operated on the error vector between the original, and quantized first 

stage output. The quantized error vector thereby provided a second approximation to the 

input original vector hence leading to the more accurate representation of the input 

vector. A third stage quantizer might then be used to quantize the second stage error 

vector to provide further refinement. The authors observed that, the penalty they were 

paying for using MSVQ was that of a marginally reduced PSNR for the encoded image 

at the cost of reduced complexity and memory requirements of MSVQ.  

David Taubman [67] presented High Performance Scalable Image Compression 

With EBCOT. The author presented, a new image compression algorithm based on 

independent Embedded Block Coding With Optimized Truncation of the embedded bit 

stream (EBCOT). The algorithm exhibited the state-of-the-art compression performance 

while producing a bit stream with a rich set of features, including resolution, and SNR 

scalability together with a “random access” property. The algorithm had modest 

complexity, and was suitable for applications involving remote browsing of large 

compressed images. The algorithm lended, itself to explicit application with respect to 

MSE as well as more realistic psycho-visual metrics capable of modeling the spatially 

varying visual masking phenomenon.  

Jon K. Rogers and Pamela C. Cosman [68] presented The Wavelet ZeroTree 

Image Compression With Packetization. The authors presented, an algorithm that was a 

combined wavelet zerotree coding, and packetization method that provided excellent 

image compression and graceful degradation against packet eraser. The wavelet zerotree 

compression and packetization method described in this paper was resilient to packet 

erasures without the use of forward error correction or retransmission protocols. The 

authors used four levels of wavelet decomposition, and each head coefficient in the low-

low band had three children. For 512 × 512 image, there were 1024 head coefficients in 

the low-low band, each had 2 × (1 + 4 + 16 + 64) = 255 descendents in its tree. If one of 

the trees were lost then lost coefficients were obtained by interpolation with its 

neighbours.  Four bits of header defined, how many trees were fit in a packet. The 

authors claimed that PZW was more suitable for the case of burst errors and packet 
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erasures. In conjunction with Forward Error Correction (FEC), PZW might prove to be 

robust against high levels of both random noise and burst errors. 

Jon K. Rogers, and Pamela C. Cosman [69] presented Robust Wavelet Zerotree 

Image Compression With Fixed-Length Packetization. The authors presented, a novel 

robust image compression algorithm, in which the output of a wavelet zerotree-style 

coder was manipulated into fixed length segments. The segments were independently 

decodable, and errors occurring in one segment did not propagate into any other 

segments. The method provided both excellent compression performance and graceful 

degradation under increasing packet losses. The authors extended the basic scheme to 

perform the region-based compression, in which specified portion of the image were 

coded to higher quality with little or no side information required by the decoder.  This 

algorithm might be useful for channels with long round trip delays, or for real time 

interactive system.  

Zixiang Xiong, Kannan Ramchandran, and Michael T. Orchard [70] presented 

Joint Optimization of Scalar And Tree-Structured Quantization of Wavelet Image 

Decomposition. The authors proposed an image compression algorithm based on 

optimal bit rate allocation between scalar and tree structure quantizers, a predictive 

approach to representing the pruned tree structure was presented, and the entropy of this 

representation was included in the optimal allocation problem. The algorithm coupled 

Lagrangian optimization of the scalar quantizers with a marginal analysis approach for 

optimizing the tree structure, and achieved excellent coding efficiency in the rate-

distortion sense. The algorithm was constituted by four major steps i) zero tree pruning 

algorithm ii) predicting the tree iii) optimizing the scalar quantizers and iv) joint 

optimization of the scalar and the tree structure quantizers.  The authors claimed that the 

proposed algorithm offered substantially improved signal to noise ratio at matching bit 

rates, compared with similarly structured compression algorithms. 

Marcus J. Nadcnau, Julien Reichel, and Murat Kunt [71] presented Wavelet-

Based Color Images Compression: Exploiting The Contrast Sensitivity Function. The 

authors presented, the algorithm focused on the implementation of the masking 

phenomenon that was parameterized by the Contrast Sensitivity Function (CSF), into a 

codec. The discussion concerned codecs based on Discrete Wavelet Transformation 

(DWT), chosen for its similarity to the Human Visual System (HVS). The best 

compression performance was typically achieved in color spaces that were composed of 

one luminance, and two chrominance channels. Using this concept, a specific opponent 

color space based on a linear transformation with optimal color-pattern-separability 
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properties were developed and corresponding CFS‟s measured. This separability was 

valid not strictly, but in approximate manner. However, experiment had shown that for 

compression proposes the property to de-correlate the color channels was more 

important than the color pattern separability. Therefore compression in a color space 

like YcrCb was still preferable.   

Lakshmi R. Iyer, and Amy E. Bell [72] presented Improving Image Compression 

Performance With Balanced Multiwavelets. The authors analyzed the effect of many 

multiwavelets properties on image compression. The properties like shift variance, and 

magnitude response influence PSNR, and perceived image quality. The multiwavelets 

transform unlike the scalar wavelet transform allows orthogonality and symmetry to co-

exists. Multiwavelets are very similar to wavelets, but have some important differences. 

In particular, where as wavelets have an associated scaling function, and wavelet 

function, multiwavelets have two or more scaling, and wavelet function. The authors 

concluded that balancing order was essential for good compression performance, but 

balancing did not automatically ensure good performance. The analysis indicate that 

shift invariance, and desirable magnitude response characteristic where also significant 

determinants of image compression performance. 

S. Rout and A. E. Bell [73] presented Color Image Compression: Multiwavelets 

Vs. Scalar Wavelets. The authors presented, the property, perfect reconstruction (PR) 

used for explaining the performance differences. This paper compared the compression 

performance of three scalar wavelets and five balanced multiwavelets on seven color 

images. The authors observed that SA4 depicted the best performance amongst the 

multiwavelets in terms of both subjective quality, and peak signal to noise ratio; and 

only the SA4 balanced multiwavelets satisfied the perfect reconstruction conditions. The 

errors for four remaining balanced multiwavelets were significant. The authors also 

claimed that there was 0.01 – 0.47 dB performance gap between the best scalar wavelets 

and the best-balanced multiwavelets. For most of the images with same compression 

ratio, the signal to noise ratio was more for scalar wavelets than multiwavelets.  

Deepti Gupta, and Shital Mutha [74] presented Image Compression Using 

Wavelet Packets. The authors presented, new wavelet packets algorithms for image 

compression. Despite of wavelet transform‟s general success, the wavelet transform 

often fails to accurately capture high frequency information, especially at lower bit rate, 

where such information is lost in quantization noise. A technique has been developed 

called wavelet packets that is better able to represent high frequency information. 

Wavelet packets are the conventional wavelet transforms in which the details are 
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iteratively filtered. A multilevel wavelet filter bank involves iterating the low-pass and 

high-pass filtering, and down sampling procedure on the output of low-pass branch, and 

high-pass branch of previous stage to form full tree decomposition. The authors 

concluded that, their techniques exhibited performance equal to, or in several cases 

superior to, the current wavelet filter. 

A. Majid Awam, Nasir M. Rajpoot, and S. Afaq Husain [75] presented Stack-

Run Adaptive Wavelet Image Compression. The authors presented, the compression 

method on the development of an adaptive image coder based on stack-run image 

representation of the quntaized coefficients. The results from various image-coding 

methods based on wavelet packets showed that they were particularly good in coding 

images with oscillatory pattern. There had been much less research on wavelet packet 

image. The authors presented an adaptive wavelet transform based image coder, which 

employ a stack run representation for quantized transforms coefficients in order to 

benefit from the infra sub-band redundancies. They discussed on the adaptive wavelet 

packet basis scheme best wavelet packet quantization with optimal scalar quantization 

and representation of the quantized coefficients with stack-run coding. The authors 

claimed that their coder was relatively simple and did not need to maintain any list of 

coefficients, as is the case with EZW, and SPIHT. For future development they 

suggested the development of the cost function for selection of best wavelet packet tree. 

Francois G. Meyar, Amir Averbuch, Jan-Olvo Stromberg, and Ronald R. 

Coifman [76] presented Fast Wavelet Packet Image Compression. The authors 

presented, a new fast wavelet packet compression algorithm, which encoded very 

efficiently textured images. This fast wavelet packet compression technique relied on 

four stages: i) Fast convolution and decimation of the image with factorized non-

separable very fast filters. ii) Selection of a best basis in the large wavelet packet library 

by using the cost function. The cost function was first order entropy for each node. It 

was also refereed as Threshold Entropy. The authors discussed the best basis algorithm, 

on the basis of cost function, best basis were selected and cost was calculated on the 

basis of threshold, scanning of the world packet coefficient by increased the frequency 

for encoding.  iii) Scanning of the wavelet packet coefficients by increasing the 

frequency. This organization resulted in sequences of coefficients with rapid decay. iv) 

successive approximation quantization and entropy coding of the coefficients. This 

quantization technique encoded the coefficients according to their significance, and 

generated long sequence of zeros. This method achieved very good quality image 

compression even at low bit rate. The authors claimed that, the results achieved by this 
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method were better than those achieved by standard techniques such as JPEG or wavelet 

coders.  

Francois G. Meyer, Jan-Olvo Stromberg, and Amir Z. Averbuch [77] presented 

Fast Adaptive Wavelet Packet Image Compression. The authors discussed that wavelets 

were ill suited to represent oscillatory patterns: rapid variation of intensity could only be 

described by the small scale wavelet coefficients, which were often quantized to zero, 

even at high bit rate, therefore wavelet packet was used for image compression. The 

authors presented an algorithm, in order to demonstrate that the advantage could be 

gained by constructing a basis adapted to a target image. Emphasis in this paper had 

been placed on developing algorithms that were computationally efficient. The authors 

developed a new fast two-dimensional (2D) convolution decimation algorithm with 

factorized non-separable two-dimensional filters. The algorithm was four times faster 

than standard convolution decimation. An extensive evaluation of the algorithm was on 

a large class of textured image. The authors claimed that the algorithm had an ability to 

reproduced textures so well, the wavelet packet coder significantly outperformed one of 

the best wavelet coder on images such as Barbara, and Fingerprints, both visually and in 

terms of PSNR. The authors concluded that when coding images that contain a mixture 

of smooth texture features, the best basis algorithm was always trying to find a 

compromise between the conflicting goals.  

G. Hong, G. Hall, and T. J. Terrell [78] presented Joint Entropy And Multiband 

Prediction For Lossless Compression. The authors explained that correlation 

redundancy was first exploited within each band of the multi-band image. The new 

stage exploiting inter-band redundancy was then introduced. The final stage was the 

reduction of statistical redundancy. Inter-band redundancy had previously attracted little 

research interest. In this paper, the authors had quantitatively analyzed this form of 

redundancy, and two schemes had been developed to exploit it. During inter-band 

redundancy reduction phase joint entropy coding had been carried out. The joint entropy 

was calculated by using a cost function, which depended on log calculations. It was also 

referred as log entropy. The authors claimed that the results had shown an average 

compression ratio of 2.80 bits/pixels was achieved, which was about 35% of the original 

eight bit/pixels. The results had shown that the inter-band correlation among different 

spectral bands could be exploited, achieving about 5 – 10% better compression than was 

achieved by compression then individually. 

Andreas Uhl [79] presented Wavelet Packed Best Basis Selection on Moderate 

Parallel MIMD Architectures. The author introduced a sub-band based parallelization, 
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which over comes most of the difficulties of a straightforward parallel version of the 

sequential algorithm. Beside the higher efficiency algorithm was easier to implement. 

The author further discussed the best basis selection based on Shannon entropy. The 

experimental result showed higher speedup compared to traditional block based parallel 

implementation of the sequential algorithm. The author claimed that the sub-band 

parallelization is much easier to implement due to less communication, and 

synchronization demand.  

Michel B. Martin, and Amy E. Bell [80] presented New Image Compression 

Techniques Using Multiwavelets And Multi-wavelet Packets. The authors presented, 

new multi-wavelet transform and quantization methods, and introduced multi-wavelet 

packets.  The authors discussed shuffling of coefficients in each 2 × 2 block. The 

computational complexity for multi-wavelet packets was higher than for wavelet 

packets and benefit of shuffling was not realized for image with more high frequency 

content. The authors claimed that SA4 and ORT4 multiwavelets tend to perform best on 

synthetic images and bi-orthogonal scalar wavelets performed best on smooth images. 

Further they discussed the comparative study with results, and claimed that the multi-

wavelet packets typically gave the best results for the synthetic images while wavelet 

packets gave the best results for the natural images.   

2.10.0 LIMITATIONS OF CURRENT TECHNIQUES 

The well-known JPEG standard was established for image compression. It 

supports gray as well as colored image. There are various allied techniques available for 

JPEG standard. Discrete Cosine Transform (DCT) is one of the important phases in the 

image compression process for JPEG standard. In DCT the compression process is 

confined to the block of pixels of size M × M, where M = 8 is accepted for image 

compression by most of the JPEG based methods [2, 32]. In the process of image 

compression the JPEG standard firstly the two dimensional image is divided into square 

blocks, DCT is carried out, quantization takes place, and the quantized information is 

encoded. During the reconstruction process, the reverse operations are carried out. This 

division of the image into the blocks, and reconstruction later causes the errors 

introduced, known as blocking artifacts [9].   

The new transform, discrete wavelet transform (DWT) was invented in 1996. 

The image compression techniques developed later used DWT as one of the important 

phase. Then the new standard for the image compression, JPEG-2000 was established in 

2000. As no subdivision of the image is carried out in the compression processed based 
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on DWT, no blocking artifacts are generated or observed in reconstructed image.  The 

wavelet transforms in JPEG-2000 are no longer limited to fixed-size blocks. Although 

JPEG-2000 supports optional tiles (but for a different purpose-handling very large 

images), they‟re rarely used, as they too cause noticeable blocking artifacts [9]. 

As human eyes are not as sensitive to color as to brightness, much of the detailed 

color (chrominance) information is disposed, while luminance is retained. This process 

is called chroma sub-sampling, and it means that a color image is split into a brightness 

image and two color images. The brightness (luma) image is stored at the original 

resolution, whereas the two color (chroma) images are stored at a lower resolution. The 

compressed images look slightly washed-out, with less brilliant color. This problem 

appears to be worse in JPEG than in JPEG-2000 [9].  

Both JPEG-2000 and JPEG operate in spectral domain, trying to represent the 

image as a sum of smooth oscillating waves. Spectral domain is appropriate for 

capturing relatively smooth color gradients, but not particularly appropriate for 

capturing edges. So, instead of capturing an edge as such, both methods attempt to fit a 

wave function to it. The main effects are the distributing short vertical and horizontal 

ridges in the image, and it is known as ringing artifacts. Baseline JPEG suffers from a 

similar problem, worsened by serious blocking artifacts. [9] 

Blurring means that the image is smoother than that of the original image. Note 

that JPEG-2000 has many problems with such artifacts. Although the shape information 

is correctly retained, the texture is lost. In such cases, JPEG-2000 does not function 

well, it is perhaps worse than JPEG. People are quite good at spotting smoothness in the 

image [9], and this effect is known as blurring artifacts.  

2.11.0 OVERVIEW OF LITERATURE SURVEY 

A number of methods have been presented over the years for performing image 

compression. The Discrete Cosine Transform (DCT) developed by Ahmed, Natrajan 

and Rao in 1974 is one of the transforms used in image compression application, JPEG. 

There are three DCT-based standards those are widely used and accepted worldwide: 

JPEG (Joint Photographic Expert Group), H.261 (Video codes for audiovisual Group) 

and MPEG (Motion Picture Expert Group).  Each of these standards is well suited for 

particular applications: JPEG is for still image compression, H.261 is for video 

conferencing, and MPEG is for high-quality, multimedia systems [3]. The International 

Standard Organization (ISO) has proposed the JPEG standard [14] for image 

compression. The JPEG standard includes four distinct modes of operation: lossless, 
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sequential, progressive, and hierarchical. Lossless JPEG uses predictive compression 

scheme and other method uses DCT. JPEG‟s baseline sequential scheme is a 

combination of the Discrete Cosine Transform  (DCT), reduced precision of the DCT 

coefficients (quantization), run-length encoding and Huffman or arithmetic encoding 

[26, 57, 71].  

Although the JPEG methods are the efficient, the block noise (artifact) appears 

in the resulting image. The block noise in an image makes the picture quality poor 

especially for human eyes [9]. Further research work has been done on still image 

compression and JPEG-2000 standard is established in 1992 and work on JPEG-2000 

for coding of still images had been completed at end of year 2000. The upcoming JPEG-

2000 standard employs wavelet for compression due to its merits in terms of scalability, 

localization and energy concentration [6, 7]. It also provides the user with many options 

to choose for achieving further compression. JPEG-2000 standard supports 

decomposition of all the sub-bands at each level and hence requires full decomposition 

at a certain level.  

A wide variety of wavelet-based image compression schemes have been 

represented in literature ranging from simple entropy coding [KLT] [27] to more 

complex techniques such as vector quantization, adaptive transform, tree encoding, 

multi-wavelet, multi wavelet packet  [74, 78, 79], and edge based coding [31]. Wavelets 

however are ill suited to represent oscillatory patterns or the wavelet transform, often 

fails to accurately capture high frequency information [38, 76, 78, 80]. Therefore, the 

JPEG-2000 is suffering bluring effects [9]. The current literature presents the Image 

Compression using wavelet packet tree and multi wavelet. In a wavelet packet area the 

little work has reported as far as Image Compression is concerned. It is observed that 

there is a scope to develop the efficient techniques of Image Compression using wavelet 

packet tree and also a necessity to develop such an efficient technique in multimedia.   

______________ 
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CHAPTER 3 

 WAVELET AND WAVELET PACKETS TREE 

 

3.1.0 INTRODUCTION 

The information is represented by the signal. This signal representation may be uni-

dimensional or multidimensional. For example audio information is represented by single 

dimensional signal and image information is represented by two-dimensional signal.  

Signal can be represented in time domain or in frequency domain. Different mathematical 

tools are available to convert the signal from time domain to frequency domain and vice 

versa. Various operations are carried out over the signal, such that, the signal information 

becomes appropriate for the particular application. Signal processing is based on 

transforming a signal in the manner that it is more useful to the application. For example, it 

is easy to measure the time (period) of a signal in time domain representation, but it is 

difficult to find frequency of a complex signal. It is easy to measure the frequency of a 

signal in frequency domain representation but it is difficult to find time of a signal. The 

wavelet transform is one of the transforms used for signal transformation. This chapter 

includes the detail discussion on wavelet and wavelet packets tree. 

3.2.0 SIGNAL REPRESENTATION AND TRANSFORMS 

 The common representations for one-dimensional signal are: the temporal 

representation (i.e. the time signal) and spectral representation (frequency signal). 

Unfortunately, these two representations are orthogonal to each other, the meaning, that it is 

not easy to extract the frequency information from the time signal and the time information 

from frequency signal [81]. For this reason, the top two representations in figure 3.2.1 

belong to opposite corners of the time resolution time plane, as the high accuracy in one 

domain is traded-off for a complete uncertainty in the other. Few signal representations are 

available in which this trade-off is not so extreme. The different choices of the time-

frequency resolution will result in a different signal representation. The choice of the proper 

signal processing technique is based on the signal that needs to be analyzed.  

The Short-Time Fourier Transform (STFT), and the Continuous Wavelet Transform 

(CWT) are used to represent a signal with finite resolution in time as well as in frequency 

domains. By adding the constraints to transformation used, the new Discrete Wavelet 
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Transform (DWT) or the Wavelet Series Sub-band Transforms are developed. This will 

result in more compact representations of the signals suited to a specific application, at the 

cost of reduced versatility [81]. The key principles used to move from one representation to 

another are shown in figure3.2.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1. Signal processing tree representing the different techniques 

 

By introducing the concept of time-frequency sampling, the concept of frames are 

introduced, whereas using the concept of orthogonal transformation, discrete wavelet 

transform and ultimately the fast wavelet transform are introduced. This evolution in a 

concept of wavelet transform from the continuous domain to the Dyadic Multi-resolution 

and fast transformation can be compared to different layers of onion [81] as shown in figure 

3.2.2. 

The Continuous Wavelet Transform (CWT) can be considered the most generalized 

representation of the wavelet transform. The price to pay is the high redundancy of the 

transform. By using the sampling theorem in time and frequency, one can reduce the 

redundancy by using frames, which form a subset of the CWT. The inner layers of the 

onion correspond to more strictly defined, and less general transformations that have 
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stronger constraints on the basis functions that can be used, but also less redundancy in 

their output.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.2 Wavelet transform signal processing onion 

3.3.0 INTRODUCTION OF WAVELET  

The concept of wavelets has been discussed in the literature for a very long time. It 

is based on fundamental ideas, which were first expressed more than a century ago in a 

variety of forms. However, it is only recently that significant progress has been made in the 

application of wavelet to practical problem in signal processing. The wavelet transform has 

been proposed as a flexible tool for the multiresolution decomposition of continuous time 

signals. Significant practical applications of wavelets have been found in signal and image 

processing.  

In 1909, Haar replaced the sine and cosine functions of the Fourier transforms with 

another orthonormal basis, now commonly known as the Haar basis.  

Daubechies introduced the concept of compactly supported wavelets and theory of 

frames. She also saw the connection between the wavelet theory, and theory of subband 

decomposition which was independently being pursued by the digital signal processing 

community of electrical engineers. Mallat introduced the concept of multiresolution, which 

is intimately related to multi-rate digital filter used for subband decomposition. 
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3.3.1 WAVELET  

The signal is defined by a function of one variable or many variables. Any function 

is represented with the help of basis function. An impulse is used as the basis function in 

the time domain. Any function can be represented in time as a summation of various scaled 

and shifted impulses. Similarly the sine function is used as the basis in the frequency 

domain. However these two-basis functions have their individual weaknesses: an impulse is 

not localized in the frequency domain, and is thus a poor basis function to represent 

frequency information. Likewise a sine wave is not localized in the time domain [82]. In 

order to represent complex signals efficiently, a basis function should be localized in both 

time and frequency domains. The support of such a basis function should be variable, so 

that a narrow version of the function can be used to represent the high frequency 

components of a signal while wide version of the function can be used to represent the low 

frequency components. Wavelets satisfy the conditions to be qualified as the basis 

functions.  

Sinusoidal wave is one of the popular waves, which extend from  to +. 

Sinusoidal signals are smooth and predictable; it is the basis function of Fourier analysis. 

Fourier analysis consists of breaking up a signal into sine and cosine waves of various 

frequencies. A wavelet is waveform of limited duration that has an average value of zero 

[12]. Wavelets are localized waves and they extend not from  to + but only for a finite 

time duration, as shown in figure 3.3.1.1. 

The wavelet as shown in figure 3.3.1.1 is a mother wavelet (h(t)).The mother 

wavelet and its scaled daughter functions are used as a basis for a new transform. 

Unfortunately, if h(t) is centered around t = 0, with extension between – T and + T, no 

matter how many daughter wavelets we use, it will not be possible to properly represent 

any point at t >T of a signal s(t). 

Please note that the wave transform did not have this problem, as the wave function 

was defined for every value of t. For the case using a localized wave or wavelet, it must be 

possible to shift the center location of the function [81]. In other words, it must include a 

shift parameter, b, and the daughter wavelets should be defined as  
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Figure 3.3.1.1 wave and wavelet 

The reason for choosing the factor 
a

1
 in the above equation is to keep the energy 

of the daughter wavelets constant.  

Thus, the wavelet transform has to be a two-dimensional transformation with the 

dimension being a, the scale parameter, and b, the shift parameter. The wavelet transform 

maps 1-D time signals to 2–D scale (frequency) and shift parameter signals. 

It is observed that for periodic functions, Fourier analysis is ideal. However, 

wavelet transforms are not restricted to only the periodic function, but for any function, 

provided it is admissible. In many cases of signal processing, one can choose the signal 

itself or a theoretical model as the mother wavelet. The advantage of doing this is that only 

few wavelet transform coefficients are then required to represent the signal. Wavelets tend 

to be irregular and asymmetric. The original wave is known as Mother wavelet. Wavelet 

analysis consists of breaking up of signal into shifted and scaled versions of the original 

(mother) wavelet. 

3.4.0 FOURIER ANALYSIS 

Fourier analysis consists of breaking up a signal into sine and cosine waves of 

various frequencies. Another way to think of Fourier analysis is as mathematical technique 

for transforming our view of the signal from time domain to frequency domain. For signal 

processing, Fourier analysis is extremely useful because the signal frequency content is of 

greater importance, so why do we need other techniques like wavelet analysis?  

Fourier analysis has a serious drawback that in transforming the signal from time 

domain to the frequency domain, time information is lost. When looking at a Fourier 

transform of a signal; it is impossible to tell, when a particular event took place. If the 

signal property do not change much over the time then signal is said to be stationary signal, 
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but however, most interesting signals contain the numerous non-stationary or transitory 

characteristics: drift, trends, abrupt changes, beginnings and ends of the events. These 

characteristics are often the most important part of the signals and Fourier analysis is not 

suited to detect them [12].  

3.5.0 SHORT TIME FOURIER ANALYSIS 

In an effort to correct the deficiency of Fourier analysis, Dennis Gabor (1946), 

adapted the Fourier transform to analyze only a small section of the signal at a time, this 

technique is known as windowing the signal. Gabor’s adaption, called the Short-Time 

Fourier Transform (STFT), maps a signal into two-dimensional function of time and 

frequency as shown in figure 3.5.1 

 

 

 

 

 

 

 

 

Figure 3.5.1 Short-Time Fourier Transform (STFT), mapping a signal into two-

dimensional function of time and frequency 

 

Figure 3.5.1 shows that, the time and frequency spaces are divided into equal 

segments. Each column represents one application of a Discrete Fourier Transform over 

specific time interval. The rows in the figure represent the frequency bins into which it 

divides the signal energy at each time segment. Each row is the result of signal analysis by 

a basis function of a specific frequency. The Short-Time Fourier Transform represents a 

sort of compromise between the time and frequency based views of a signal. It provides 

some information about time and frequency both, when and at what frequencies a signal 

event occurs. However, one can obtain this information with limited precision, and that 

precision is determined by the size of the window. While the STFT is the compromise 

between time and frequency information, a drawback of this technique is that once one 

chooses a particular size of time window, that window is the same for all frequencies of the 
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signals. Many signals require more flexible approach – where one can vary the window size 

to determine more accurately either time or frequency [12].  

3.6.0 WAVELET ANALYSIS 

 Wavelet analysis represents a windowing technique with variable sized regions. 

Wavelet analysis allows the use of long time intervals, when one wants more precise low 

frequency information of a signal, and short time intervals, when one wants high frequency 

information of a signal. Wavelet analysis uses a time scale region as shown in figure 3.6.1 

 

 

 

 

 

 

 

 

 

Figure 3.6.1 Wavelet transform, mapping a signal into two-dimensional function of 

time and scale 

 

Figure 3.6.1 shows, wavelet analysis, which uses time and scale analysis regions, 

which are not evenly spread. The vertical position of each rectangle shows the frequency of 

a signal and the vertical size shows the frequency resolution or bandwidth of the signal, as 

governed by each wavelet or basis function. Wavelet analysis allows the use of long time 

intervals where one wants to observe low frequency information and short time intervals 

where one wants to observe high frequency information. If one looks at signal with large 

window, one sees large features of the signal. If one looks at a signal with small windows, 

one can fine structure of the signal. 

It is noticed that wavelet analysis does not use time-frequency region, but it uses the 

time scale region. The basis functions used in wavelet are not sine waves, but less regular 

functions, which are stretched or compressed to get different scales. Small scale or fine 

scale is analogous to high frequency, and coarse scale is analogous to low frequency. The 

variable time is often refereed to as shift or position, so rather than referring to the time 
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frequency region of the DFT, it talks about a shift scale region of the wavelet analysis [12]. 

The mathematical details of the wavelet transform is discussed as follows: 

The word wavelet literally means small wave. The wavelet transform, similar to the 

short-time Fourier transform, maps a function s(t), into a two-dimensional domain (the 

time-scale plane) and is denoted by WS (a, b) given by 

dt
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where h(t) is in general called the mother wavelet, and the basis functions hab of the 

transform, called daughter wavelet, are given by 
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Equation 3.6.1 is known as the forward wavelet transform; where hab(t) is a set of basis 

functions obtained from the mother wavelet h(t) by compression or dilation using scaling 

parameter a, and temporal translation using shift parameter b. The scaling parameter a is 

positive and varies form 0 to . For a < 1, the transform performs compression of the 

signal, and for a > 1, the transform performs dilation of the signal [81]. The signal s(t) can 

be recovered form the wavelet coefficients Ws(a, b) by the inverse wavelet transform, given 

by: 
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provided that constant c is 
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Equation 3.6.3 is also referred to as reconstruction formula, inverse transform, or 

synthesis, and equation 3.6.4 is generally known as the admissibility condition. 

3.7.0 FOURIER TRANSFORM AS A WAVE TRANSFORM 

The Fourier transform S() is a frequency representation of a time domain signal s(t) is 

given by: 

dttjes (t)S 



 )(      ---3.7.1 

and its inverse transform 
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where  is angular frequency, and is equal to 2f, and f is the frequency of the continuous 

signal in Hz. Equation 3.7.1 is the traditional definition of a Fourier transform. However, 

one can choose to utilize different notation using the concept of time scaling, a =1/. One 

can also introduce the concept of a wave function, as the basis function of a transformation 
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Equation 3.7.1 can now be written as the wave transform: 
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As the basis functions are all created by scaling in time of the same mother wave 

h(t), they are called as daughter waves. A mother wave and two daughter waves are shown 

in figure 3.7.1.  

 

 

 

 

 

 

 

Figure 3.7.1 Mother and Daughter waves (Fourier bases) as a function of time for a = 

1, 2 and 1 / 2   

 

The functions are periodic waves that extended over the entire time axis form  to 

+. It is important to note that the basis functions are like waves, each having a different 

frequency obtained by changing the scale of the horizontal axis. The top curve in the figure 

for a = 1 represents the mother wave e
jt
. For a >1, the curve in the middle of the figure, the 

function is dilated in time, resulting in a lower frequency wave. For a <1, the curve at the 

bottom of figure, the wave is compressed in the time and it has a higher frequency 

oscillation [81]. 
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As the waves are orthogonal and extend over the entire frequency space, the inverse 

transformation is obtained as 

2
)()(

2
/)()(

a

da
tahaW

a

daajteaWts 




        ---3.7.6 

In order to keep consistency with equation 3.7.2, the limits of integration of 

equation 3.7.6 are set between  to +. In reality most of the applications are limited to 

real signals, hence it is common practice to consider only positive values of the scaling 

parameter a. Even though only positive values of a are considered, there is no loss of 

information in Fourier transform [81].  

 The term da/a
2
 represents the differential change in frequency and is obtained form 

differentiating relationship between frequency and scale: 

2a

da
d           ---3.7.7 

The Fourier transform is the most used signal transformation in the analysis of 

signals; it is not optimal for many applications, because if it is localized in time domain, 

then it is not localized in frequency domain and vice versa. As an example, let us look at 

the Fourier transform S() of the rectangular function s(t) defined as  

    

             ---3.7.8

   

given by 




















2
sin

)2/(

)2/(sin
)(

T
T

T

T
TS         ---3.7.9 

The Fourier transform in equation 3.7.9 is defined (i.e., it has no zero values) over the 

entire frequency axis. It follows that to define the signal s(t) in the frequency domain, the 

complete set of values of S() must be used. The rectangular function, and its Fourier 

transform are plotted in figure 3.7.2. It is found that the signal s(t) is well localized in time, 

but it is not localized in frequency by its Fourier transform. For time localized signals, like 

the rectangular function s(t) shown in figure 3.7.2, a set of basis functions such as the 

waves is not convenient, although mathematically correct. A more compact result can be 

obtained, if the basis functions of the transformation were localized. Thus, there is a need of 

wavelets, not waves.  

 

1 for     | t |  <T /2 

0 otherwise 
{ 

)(ts  
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Figure 3.7.2 Rectangular function and its Fourier transform. 

3.8.0 CONNECTION BETWEEN WAVELETS AND FILTERS 

A wavelet is waveform of limited duration that has an average value of zero [12]. 

Wavelets are localized waves and they extend not from  to + but only for a finite time 

duration. The wavelet transform, transforms the signals from one-dimensional to two-

dimensional. By definition, equation 3.6.1 describes the wavelet transform according to the 

following relationship: 

dt
a

bt
hts

a
basW 


 







 
 *)(

1
),(        ---3.8.1 

In above equation the variable t is replaced by  and, b is replaced by t to yeild 


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 d
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t
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),(        ---3.8.2  

The equation 3.8.2 can be rewritten as  

)(**)()(*)(),( tahtstahtstasW        ---3.8.3 

where the symbol  represents the correlations operations, and the symbol * the 

convolution operator, and the function ha(t) is given as 











a

t
h

a
tah

1
)(          ---3.8.4 

The wavelet transform of a signal is nothing but the correlation between the signal and the 

function ha(t) [81]. The wavelet transform of a signal s(t) can be obtained by applying the 

signal as the input to a linear system whose impulse response is given by ha(- t) as shown in 

figure 3.8.1 (a) and figure 3.8.1 (b) shown in the Fourier domain 
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Figure 3.8.1 Filter bank representation of the wavelet transform of a signal s(t) in (a) 

Time domain and (b) Frequency domain 

 

The Fourier transform of equation 3.8.3 is given by 

)()(),()},({  ahSasWtasW         ---3.8.5 

where Ws(a, ), S(), and Ha() are the Fourier transform of W(a, t), s(t) and ha(t) 

respectively. S() gives us the frequency components of the signal. Ha() gives the 

frequency response of the linear system or filter whose impulse response is given by ha(t). 

Ha() is given by 

)()}({)(  aHatahaH          ---3.8.6 

 The wavelet transform is thus the response of the filter bank constructed by the 

filters Ha()to the signal s(t) [81]. 

The wavelet coefficients are obtained by processing the signal using a filter bank for 

different values of a, whose frequency response are given by Ha()in frequency domain as 

shown in figure 3.8.2. The time domain implementation using convolvers is shown in 

figure 3.8.3. 

The implementation of a Fourier transform using linear systems involves a time-

variant impulse response. In contrast, wavelet transforms as defined can be implemented 

using time-invariant systems. This is an enormous advantage in connection with 

implementing wavelet transformers. For example, it is well known that one can perform a 

correlation of signals in real time or in the spatial domain using optical signals. Because of 

the time-invariant property, all of these correlators can be used directly for implementing 

wavelet transformers. A block diagram of a typical wavelet transform signal processor is 

shown in figure 3.8.4, which is the wavelet transform implementation of the general 

transform domain processor. 

 s(t)                               WS(a, b)  
 

(a) 
 

     S()                                S() H*(a0)  
 
 

             Hab*() 

(b) 

hab (-t) 

 
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Figure 3.8.2 Filter bank representation of the Continuous Wavelet Transform 

 

 

 

 

 

 

 

 

 

 

Figure 3.8.3 Time domain filter bank implementation of the continuous wavelet 

transforms 

 As discussed earlier, a wavelet transform can be performed either in the time 

domain or in the frequency domain using filter banks. The frequency domain 

implementation is shown in figure 3.8.5. In this figure S(), H() and Ws(a) represent the 

Fourier transform of s(t), h(t) and ws(a) respectively. Depending on the application, the 

block labeled WT filtering multiplies the wavelet transform coefficients with another 

function.  
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Figure 3.8.4 Block diagram of a wavelet transform signal processor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8.5 Frequency domain implementation of the wavelet transforms signal 

processor 

 

The WT synthesis block diagram is really an inverse wavelet transform, which 

converts the processed signal back into the time domain.  

It is of interest to point out that the block diagrams shown in figure 3.8.4 and 3.8.5 

can be modified such that their practical implementation becomes easier. A particular case 
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is shown in figure 3.8.6 and 3.8.7. In this case, the filtering is performed after the WT 

synthesis block diagram. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8.6 (i) Time domain representation of the alternative design of the wavelet 

transform signal processor 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8.6 (ii) Time domain representation of the alternative design of the wavelet 

transform signal processor  

 

In figure 3.8.6, the synthesis and analysis blocks are combined. For this case, each 

filter has a combined impulse response given by h*(-t/a) h(t/a). A similar simplification is 

not possible for the case of Fourier transforms. Figure 3.8.7 shows the frequency domain 

implementation of the modified structure. Again, the synthesis and analysis blocks can be 

combined for simplification. For this case the filters have combined frequency response 

given by |H(a )|
2
. 
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Figure 3.8.7 Frequency domain representation of the alternative design of the wavelet 

transforms signal processor  

 

It is convenient to discuss the admissibility condition at this point. For the wavelet 

transform, an inverse wavelet transform should also exist. The inverse wavelet transform is 

given by: 

    db
a

da

a

bt
hbasW

c
s(t)

2
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

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
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





 
       ---3.8.7 

Where C is an unknown constant. If we choose s(t) =  or S() = 1, then the output 

of the inverse transform should also be a delta function. 

This situation is shown in the frequency domain in figure 3.8.8 with F() = S().  
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Figure 3.8.8 Filter bank representation of the wavelet transform admissibility 

condition 

 

It is obvious that the following equation should be satisfied: 




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where Ha() = a  H(a) hence 
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The constant C has to be less than infinity for the wavelet transform to be valid. 

Thus, it is observed that any mother wavelet can be chosen or admissible as long as C < . 

In this way, we obtain the so-called admissibility condition.  

Let us point out again the versatility of the wavelet transform. Any function can be 

chosen as a mother wavelet as long as admissibility condition is satisfied. Thus, one is not 

confined to a single set of basis function, as is the case in a Fourier transform. This ability 

to choose the mother wavelet depending on the particular problem is a significant 

advantage.  Actually, one can employ the usual optimization techniques to obtain the 

minimum mother wavelet for a particular problem by minimizing a proper chosen cost 

function. This is possible since the wavelet transform is both linear and time invariant; this 

means that one can choose a linear combination of admissible wavelet functions [81]. 
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3.9.0   THE CONTINUOUS WAVELET TO THE DISCRETE WAVELET 

In definition of wavelet transform, the variable considered for the time t, scale a, 

shift b and angular frequency  are continuous, and hence the transform is said to be 

continuous wavelet transform.  

In the theory of linear systems, one also deals with continuous and discrete times.  

In the first case, it is talked about analog signal processing, whereas the latter is called 

discrete-time signal processing. Analog signal processing involves the Fourier transform, 

whereas the so-called z-transform plays an important role for the discrete case.  Digital 

signal processing involves not only discrete time but also values, which are quantized. 

A Fourier transform maps 1-D signals to 1-D frequency space, whereas a wavelet 

transform maps 1-D signals to a 2-D space (the dimensions being given by the scale and 

shift parameters a and b).  Thus, while starting to discretise the variables, the situation 

becomes quite complex. However, one can have a situation where the signal itself is 

continuous with continuous t and f but the basis functions have bounded t and discrete a. 

This is the case, which people generally refer to as a Discrete Wavelet Transform (DWT),  

One cannot use matrix theory with discrete/values to discuss DWT as the variable t 

is still continuous. Equivalent to the DFT, one has the case where t and a are both discrete. 

This is the case generally known as sub-bands and was developed independently starting 

from the concepts of digital signal processing.  In wavelet theory, this is called as wavelet 

series. Just as we modified the DFT to obtain the FFT, if one restricts sub-bands to the 

dyadic case; one obtains high computational efficiency like the FFT case, except using 

polyphase decomposition.  

3.10.0 SUBBANDS 

The continuous time signal is converted into discrete time signal by taking the 

samples at fixed intervals of time as per the Nyquist criteria. Let us consider the case of 

wavelet transform, when the time axis is not continuous but discrete. The sampling rate, fs, 

is determined by the Nyquist sampling theorem, which states that for a signal with highest 

frequency fmax the sampling frequency must be fs   2fmax or the sampling interval must be 

maxfsf
sT

2

11
         ---3.10.1 

The continuous signal, s(t) becomes s(nTs). Since in general one normalizes the time 
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variable Ts as unity and hence s(nTs) = s(n). A band-limited signal is analyzed with max = 

2fmax  =  fs =  as shown in Figure 3.10.1.   

 

 

 

 

 

 

 

 

Figure 3.10.1 Frequency space of a discrete-time signal with sampling rate Ts = 1 

leading  to max = . 

 

A typical discrete-time linear system is shown in Figure 3.10.2. Similar to the impulse 

response in the continuous case, impulse response of a linear system is denoted by h(n). 

The convolution integral is replaced by a discrete convolution given by: 

 
m

mnhmfnhnfng )()()(*)()(                ---3.10.2 

 

 

 

 

           ---3.10.3 

 

           ---3.10.4 

 

 

 

 

 

Figure 3.10.2 Discrete-time linear system (a) in the time domain and (b) in the z-

domain 

 

In order to obtain a representation similar to a Fourier transform, for the discrete-

time case, substitute z = e
j 

in above equation.  

G(z) = F(z) H(z)     ---3.10.5 

G(z)| z = ej = G (e
j

) = F (e
j

) H(e
j

)    ---3.10.6 

 

      f(n)       y(n)  

 

(a) 

 

y(n) = f(n)*h(n)  =                f(m)h(n – m) 

 

  

h(n) 

m 
 

                               F(z)                       Y(z) = F(z) H(z) 

 

 

                                              H(z) 

(b) 

 
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G()= F() H()     ---3.10.7 

where G(z), F(z) and H(z) are the z-transforms of g(n), f{n), and h(n),respectively.   

Consider a signal space in the frequency domain, as shown in Figure 3.10.1 going 

from 0 to , under the condition sampling frequency normalized to 1.  Thus, according to 

the Nyquist sampling theorem, to avoid aliasing error, the signal's angular or radian 

frequency cannot exceed .   

The two filters; one low-pass and the other one high-pass are designed, such that it 

splits the signal space exactly in half a shown in Figure 3.10.3. The low-pass region 

extends from 0 to /2 and the high-pass region extends from /2 to . Of course, once we 

design the filters to split a frequency band, we can split it again and again, forming 

subbands. Thus, in subband theory, we design a set of two prototype filters, such that 

repeated application of these filters divides the signal frequency band into equal parts. This 

is also referred to as a filter bank.  There are different ways to split up the frequency space; 

some examples are shown in Figures 3.10.4 and 3.10.5.  

 

 

 

 

 

 

 

Figure 3.10.3 Splitting of the signal space using and ideal low-pass (H0) and high-pass 

(H1) filters 

 

In a dyadic wavelet transform, one can design a mother wavelet from which set of 

daughter wavelets is generated, which forms a complete set. In other words, remembering 

the connection between the wavelet transform, and the filter bank, for this case one filter 

has been designed, and then using the scaling property, we have constructed a filter bank. 

All the filters in the filter bank are identical in properties except for their scale.  In a 

subband implementation, initially two filters are designed, which are then scaled to form a 

filter bank or subband. For most of the applications, it is convenient to construct the 

wavelet transforms using two filters. Their corresponding impulse responses are then used 

to obtain a scaling function (low-pass filter) and a wavelet function (high-pass filter). At 

this point, the difference between subband and wavelet transform becomes very small as, in 
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general, subbands refer to the discrete-time signal analysis application, whereas wavelet 

transforms refer to the continuous-time case [81]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10.4 (a) The filter bank for splitting the signal bandwidth in the low 

frequency part only. (b) Frequency domain representation of the non-uniform 

subband. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10.5 (a) The filter bank for uniform splitting the signal bandwidth into eight 

equal parts 
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Figure 3.10.5 (b) Frequency domain representation of the subbands. 

 

Consider the design of the subband filters. The obvious choice in the frequency 

domain is to design two ideal filters, whose frequency responses are rectangular as shown 

in Figure 3.10.5. The definition of filters is given in the frequency domain; to actually 

implement them; it is needed to convert it into the time domain. The impulse response of 

the ideal filter is the well-known sinc  function. For the continuous-time case, the response 

extends to infinity and an exact implementation is therefore impossible. A delay line 

implementation of an N-order filter is shown in Figure 3.10.6.  The figure also shows the 

fundamental elements of digital signal processing. To obtain a perfect response based on 

the filters in Figure 3.10.3, the number N of coefficients should be infinity.  The simplest 

practical solution to obtain a FIR (finite impulse response) filter is to terminate the delay 

line coefficients beyond a certain value N. This assumes that truncated coefficients are very 

small in amplitude, with respect to the first N.  The effect of terminating the coefficients of 

the impulse response to a finite number N results in the modification of the ideal response 

with the introduction of ripples in the stop-band, as shown in Figure 3.10.7. As it can be 

seen, some high- frequency information of the signal still leaks in the low- pass filter as can 

be noticed that the filter response for the low-pass case extends beyond /2 and introduces 

ripples in the pass band. This means that this design will introduce aliasing error and 

distortion, which one would prefer to avoid. 
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Figure 3.10.6 Finite impulse response (FIR) implementation of (a) elements of single 

rate digital signal processing and (b) N-tap FIR filter 

 

 

 

 

 

 

 

Figure 3.10.7 (a) Typical N-tap FIR low-pass filter response and (b) Typical N-tap 

FIR high-pass and low-pass filter response showing distortion and aliasing. 

 

To appreciate the problem associated with aliasing and distortion errors, consider 

Figure 3.10.8, in which the signal is spitted into equal frequency bands. H0(z) and H1(z) 

refer to the z-response of the low-pass and high-pass filters, respectively. Firstly the signal 

is analyzed by splitting it into low-pass and high-pass frequency bands, this section is 

known as the analysis filter. The processing is carried out in the frequency domain, and 

then there is a need to convert it to the time domain. This last part is done through the so-

called synthesis filter. Synthesis filters are like the reconstruction formula or the inverse 

transform. If no alteration of the coefficients in the frequency domain is done, then the 

input signal s(n) must be identical to the output )(
^

ns .  

G0 and G1 are the low-pass and high-pass synthesis filters, respectively. However, if 

H0 and H1 are ideal filters, then G0 and G1 are also ideal filters. Thus, for this case G0 = H0 

and G1 = H1.  A point of historical interest is the fact that people initially used H0 and H1 
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for both analysis and synthesis filters. The concept of using different filters to cancel out 

the distortion and aliasing errors was introduced later. 

Let us introduce the concept of multirate filters using Figure 3.10.8. We note that 

the bandwidth at the output of H0 is only /2, although the output has a sampling frequency 

corresponding to . So, every other sample in the output is superfluous and carries no 

information; we might as well discard these samples and hence the output of the filter is 

down-sampled by two. This is shown by the block diagram with a downward arrow and a 

2, indicating that every other sample point is discarded; it is called decimation by 2. Similar 

operations are performed on the high-pass output. Thus, if the input signal has N samples, 

then the output signal also has N samples. However, N/2 of these correspond to the low-

pass version and the other N/2 correspond to the high-pass version [81]. At the output of the 

next stage shown in Figure 3.10.8, has an N sample because in the processing signal is up 

sampled by two and then filtered.  

 

 

 

 

 

 

 

 

 

Figure 3.10.8 (a) Analysis and Synthesis filters 

 

 

 

 

 

 

 

 

 

(b) 

Figure 3.10.8  (b) with decimation and interpolation 
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Since the number of samples in the input and output are the same, this process of 

subband operation is optimum.  

When H0 and H1 are not ideal; they have ripples and go beyond the /2 cutoff 

frequency as shown in Figure 3.10.7. Distortion error is obvious, as ripples are generated in 

the pass band. However, aliasing error occurs due to decimation, because the output 

bandwidths are not limited to /2. Initially, the solution for reducing these errors was to use 

window functions, which reduce ripples in the pass band and extend beyond the cut-off 

frequency, /2. However, one cannot completely eliminate the errors using this technique. 

The situation is similar to using a Gabor transform, which does not form a complete set of 

basis functions. 

To solve this problem, the so-called quadrature mirror filter (QMF) was introduced, 

When using a QMF, one does not use the same filters for analysis and synthesis, The basic 

idea is to use different filters such that the errors in analysis are minimized by the synthesis.  

The perfect reconstruction filters are also QMF, but they completely cancel both the 

distortion and aliasing errors. The situation can be understood by considering an analogous 

situation, (shown in Figure 3.10.9).  If one can map linearly between the time and 

frequency domains, then both the analysis and synthesis filters are identical and linear. 

However, if the analysis filter is nonlinear due to practical constraints; then one can correct 

all the nonlinearity for the whole system by imposing the opposite nonlinearity on the 

synthesis filter [81].  

 

 

 

 

 

 

 

 

Figure 3.10.9 Linear and nonlinear mapping of the input and the output for the 

analysis and synthesis filters. 

 

As shown in Figure 3.10.9, one can choose any kind of nonlinearity and correct it. 

The case of discontinuous signals will be highly susceptible to quantization error and noise, 
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whereas the continuous, smoother case probably will be more stable.  The situation is very 

similar for the case of perfect reconstruction filter design.  

3.11.0 TWO STAGE SUBBAND FILTER 

The single-stage decimation-interpolation subband decomposition can be extended 

easily, as shown in Figure 3.11.1, where the original input sequence x(n) of length N is 

mapped into four sequences of N/4 samples each. This is very important since basically N 

input samples are mapped using a N × N matrix to next output.   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11.1 Two stage subband filter. 

 

Figure 3.11.1, shows a two-stage analysis and synthesis filter. The filter responses 

are given in Figure 3.10.8a and they are mirror images around /2; that is the reason for the 

name Quadrature Mirror Filter. For finite impulse response (FIR) filters which extends to 

N, the perfect reconstruction condition is satisfied provided that 
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Note that the above equations fully describe all the filters h1, g0 and g1, once the 

filter ho has been defined. The conditions on h0 are 
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The above equation means that H0 and H1 are QMF as shown in Figure 3.11.1.  As 

noted previously, they are called quadrature mirror filters because the magnitudes are a 

mirror image of each other, with the mirror placed at  = /2.  H1(z) is in quadrature to 

G0(z) and Ho(z) is also in quadrature to G1(z).  As H0 has N taps, it is needed to determine 

N tap weights; however, only N/2 equations are specified.  Thus, there is quite a bit of 

arbitrariness in the design.  Theoretically, one can choose any other N/2 equations to design 

the filter, which will be perfect reconstruction.  

3.12.0 PROPERTIES OF WAVELET 

In this section, the properties of wavelet like Localized in time and frequency, 

Admissibility, Vanishing Moments, Compact support, Orthogonal, bi-orthogonal and 

symmetry have been discussed in brief [91].  

3.12.1 LOCALIZED IN TIME AND FREQUENCY 

Daughter wavelet is given as 
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The Fourier Transform of hab(t) 
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The equation 3.12.1 and 3.12.2 shows that hab(t) and Hab() has a finite length. It 

means that hab(t) is localized in time and Hab() is localized in frequency and hence 

the mother wavelet h(t) is localized in time and frequency. 
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3.12.2 ADMISSIBILITY 

Mother wavelet is said to be admissible if it has finite energy or mother wavelet 

must be square integrable. 


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Which satisfies the following admissibility condition 







  d

2
)H(

HC 



    ---3.12.4 

For a band-limited mother wavelet h (t), the admissibility condition is equivalent to 

imposing the condition that the function has zero mean. 

0
0

)(0dth(t) 









Hor   ---3.12.5 

Since mother wavelet is admissible the properties of linearity scaling and time 

shifting is applicable for CWT. 

3.12.3  VANISHING MOMENTS 

To measure the local regularity of the signal, it is not important to use wavelet with 

narrow frequency support, but vanishing moments are crucial. If the wavelet has the 

n vanishing moment, then we show that the wavelet transform can be interpreted as 

a multi-scale differential operator of order n. A wavelet has n vanishing moments if 

and only if its scaling function can generate polynomials of degree smaller than or 

equal to n. While this property is used to describe the approximating power of 

scaling functions, in the wavelet case it has a "dual" usage, e.g. the possibility to 

characterize the order of isolated singularities. The number of vanishing moments is 

entirely determined by the coefficients h[n] of the filter h which is featured in the 

scaling equation [83]. The wavelet h(t) has n vanishing moments, if  

nkfordtthkt 

 0,0)(             ---3.12.3.1 

3.12.4 COMPACT SUPPORT 

If the impulse response of the filters h1 and h2 has a finite support, then the scaling 

functions have the same support, and the wavelets are compactly supported. If the 

supports of the scaling functions are respectively [N1, N2] and [M1, M2], then the 



 81 

corresponding wavelets have support [(N1-M2+1)/2, (N2-M1+1)/2] and [(M1-

N2+1)/2, (M2-N1+1)]. 

3.12.5 ORTHOGONAL 

The orthogonal transform is useful tools for signal processing. Many filters have to 

be design so far to be applied to the transform domain. Suppose there is set of 

continuous functions {h0(t), h1(t), h2(t), …} of t. These functions, real or complex, 

are said to be orthogonal functions in the interval [t0, t0+T] [83], if  

 


 Xx

x
dttjhtih0

0
)()(                   ---3.12.6.1 

When k = 1 the set is called orthonormal.  

3.12.6 BI-ORTHOGONAL 

In a wavelet transform the separate filter for analysis and synthesis can be used. Let 

us consider h1 and g1 is low pass and high pass filter used for analysis and h2 and g2 

are low pass and high pas filters used for synthesis [81, 85], then the condition for 

perfect reconstruction is  

0)(2)(*
1)(2)(*

1   GGHH             ---3.12.7.1 

2)(2)(*
1)(2)(*

1   GGHH              ---3.12.7.2 

As the filter pairs (h1, g1) and (h2, g2) create basis for the representation of the any 

signal s[n]  L
2
(Z), then the resulting wavelet and  scaling functions represents bi-

orthogonal Riesz bases in L
2
(Z). 

3.12.7 SYMMETRY 

Symmetric scaling functions and wavelets are important because they are used to 

build bases of regular wavelets over an interval, rather than the real axis. If the 

filters h1 and h2 have and odd length and are symmetric with respect to 0, then the 

scaling functions have an even length and are symmetric, and the wavelets are also 

symmetric. If the filters have an even length and are symmetric with respect to 

n=1/2, then the scaling functions are symmetric with respect to n=1/2, while the 

wavelets are antisymmetric. Daubechies has proved that, for a wavelet to be 

symmetric or antisymmetric, its filter must have a linear complex phase, and the 

 

          k   if i = j 

          0    otherwise {
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only symmetric compactly supported conjugate mirror filter is the Haar filter, which 

corresponds to a discontinuous wavelet with one vanishing moment. Besides the 

Haar wavelet, there is no symmetric compactly supported orthogonal wavelet. 

3.13.0 WAVELET FAMILIES 

 In this section, most of the known families of mother wavelets, which have proven 

to be useful in a variety of signal processing applications, are discussed with their 

characteristics [12]. 

3.13.1 HAAR WAVELET 

This is the simplest of all wavelets. This wavelet is discontinuous and resembles a 

step function. It is also referred as ‘db1’ and it is defined as  

otherwise0

1t1/21

1/2t01h(t)





 

The scaling function and the wavelet function of Haar wavelet is shown in figure 3.13.1.1 

 

 

 

 

 

 

 

Figure 3.13.1.1 Scale function and wavelet function of Haar wavelet 

The Haar wavelet has the shortest support among all orthogonal wavelets; it is not adapted 

to approximately smooth functions because it has only one vanishing moment.  

3.13.2 DAUBECHIE WAVELETS 

  Ingrid Daubechies invented compactly supported orthogonal wavelets, and makes 

discrete wavelet analysis practical. The names of the Daubechies family wavelets are 

written dbN, where N is the order. The db1 wavelet is same as Haar wavelet. Daubechies 

wavelets are extremely important, because it can be shown that they have the minimum 

support size for given number of N. Daubechies constructed her wavelets from the finite 

response of the conjugate mirror filter. These wavelets have no explicit expression except 
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for db1, which is Haar wavelet. However, the square modulus of the transfer function of h is 

explicit, and fairly simple [12]. 

 


 1
0

1)( N
k

kykN
k

CyP               ---3.13.2.1 

.1 tscoefficienbinomialthedenoteskN
k
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












2

2sin
2

2cos
2

)0
ω

P

N
ω

(ωm             ---3.13.2.2 

where  ikeN
k khm 

 


 12
02

1
)(0  

The scaling function and the wavelet function of dbN wavelet for N = 1 to 9 is shown in 

figure 3.13.2.1 to 3.13.2.9 

 

 

 

 

 

 

 

Figure 3.13.2.1 Scale function and wavelet function of db2 wavelet 

 

 

 

 

 

 

 

Figure 3.13.2.2 Scale function and wavelet function of db3 wavelet 
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Figure 3.13.2.3 Scale function and wavelet function of db4 wavelet 

 

 

 

 

 

 

 

 

 

Figure 3.13.2.4 Scale function and wavelet function of db5 wavelet 

 

 

 

 

 

 

 

Figure 3.13.2.5 Scale function and wavelet function of db6 wavelet 
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Figure 3.13.2.6 Scale function and wavelet function of db7 wavelet 
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Figure 3.13.2.7 Scale function and wavelet function of db8 wavelet 

 

 

 

 

 

 

 

 

 

Figure 3.13.2.8 Scale function and wavelet function of db9 wavelet 

 

 

 

 

 

 

 

 

Figure 3.13.2.9 Scale function and wavelet function of db10 wavelet 

General characteristics of Daubechies wavelet are: 

 The supporting length of wavelet function  and scaling function  is 2N – 1.  

 The number of vanishing moments of  is N. 

 The analysis is orthogonal. 

 Filter length is 2N. 
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 Discrete wavelet transforms and continuous wavelet transform is possible. 

 Order of N is 1, 2 ---- 48. 

 It doesn’t have explicit expression. 

 It is asymmetrical. 

 It has arbitrary regularity. 

 It is compactly supported orthogonal. 

  Exact reconstruction is possible. 

 It is implemented using FIR filter. 

 Fast algorithm is possible. 

3.13.3 COIFLET WAVELETS 

These mother wavelets built by Daubechies at the request of Coifman. It is also 

orthogonal wavelet; it is compactly supported wavelets with highest, number of vanishing 

moments for both phi and psi for given support width. These wavelets are written as coifN, 

where N is the order. The function psi has 2N moments equal to zero and, what is more 

unusal, the function phi has 2N – 1 moments equal to zero. The two functions have a 

support of length 6N – 1.  The CoifN psi and phi are much more symmetrical than the DbNS 

with respect to the support length [12]. The scaling function and the wavelet function of 

CoifN wavelet for N = 1 to 5 is shown in figure 3.13.3.1 to 3.13.3.5 

 

 

 

 

 

 

Figure 3.13.3.1 Scale function and wavelet function of Coif1 wavelet 

 

 

 

 

 

 

 

 

 

Figure 3.13.3.2 Scale function and wavelet function of Coif2 wavelet 
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Figure 3.13.3.3 Scale function and wavelet function of Coif3 wavelet 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13.3.4 Scale function and wavelet function of Coif4 wavelet 

 

 

 

 

 

 

 

Figure 3.13.3.5 Scale function and wavelet function of Coif5 wavelet 

General characteristics of Coiflet wavelets are: 

 The supporting length of wavelet function  and scaling function  is 6N – 1.  

 The number of vanishing moments of  is 2N and  is 2N – 1. 

 The analysis is orthogonal. 

 Filter length is 6N. 

 Discrete wavelet transforms and continuous wavelet transform is possible. 

 Order of N is 1, 2,  ----5. 

 It doesn’t have explicit expression. 
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 It is nearly symmetrical. 

 It is arbitrary regular. 

 It is compactly supported orthogonal. 

 Exact reconstruction is possible. 

 It is implemented by using FIR filters. 

 Fast algorithm is possible. 

3.13.4 BIORTHOGONAL WAVELETS 

It is compactly supported Biorthogonal wavelets for which symmetry and exact 

reconstruction are possible with FIR filters. Biorthogonal wavelets written as bior Nr,Nd, 

where Nr, is order of wavelet, which is used for reconstruction and Nd, is order of wavelet, 

which is used for decomposition. Two wavelets, instead of just one, are introduced:  

 One, 
~
 , is used in the analysis, and the coefficients of a signal s are: 

 dxxkjxskjC )(,

~
)(,

~
              ---3.13.4.1 

 The other , is used in the synthesis 

kjkjkj Cs ,,,

~
                         ---3.13.4.2 

The scaling function and the wavelet function of Bior Nr, Nd wavelet for analysis 

and synthesis are shown in figure 3.13.4.1 to 3.13.4.15. 

 

 

 

 

 

 

    (a)         (b) 

Figure 3.13.4.1 Scale function and wavelet function of Bior1.1 wavelet for (a) analysis 

and (b) Synthesis 
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(a)         (b) 

Figure 3.13.4.2 Scale function and wavelet function of Bior1.3 wavelet for (a) analysis 

and (b) Synthesis 

 

 

 

 

 

 

 

 

 

(a)         (b) 

Figure 3.13.4.3 Scale function and wavelet function of Bior1.5 wavelet for (a) analysis 

and (b) Synthesis 

 

 

 

 

 

 

 

 

(a)         (b) 

Figure 3.13.4.4 Scale function and wavelet function of Bior2.2 wavelet for (a) analysis 

and (b) Synthesis 

 

 

 

 

 

 

 

 

(a)         (b) 

Figure 3.13.4.5 Scale function and wavelet function of Bior2.4 wavelet for (a) analysis 

and (b) Synthesis 
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(a)         (b) 

Figure 3.13.4.6 Scale function and wavelet function of Bior2.6 wavelet for (a) analysis 

and (b) Synthesis 

 

 

 

 

 

 

 

 

 

(a)         (b) 

Figure 3.13.4.7 Scale function and wavelet function of Bior2.8 wavelet for (a) analysis 

and (b) Synthesis 

 

 

 

 

 

 

 

 

 

(a)         (b) 

Figure 3.13.4.8 Scale function and wavelet function of Bior3.1 wavelet for (a) analysis 

and (b) Synthesis 

 

 

 

 

 

 

 

 

 

(a)         (b) 

Figure 3.13.4.9 Scale function and wavelet function of Bior3.3 wavelet for (a) analysis 

and (b) Synthesis 
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(a)         (b) 

Figure 3.13.4.10 Scale function and wavelet function of Bior3.5 wavelet for (a) analysis 

and (b) Synthesis 

 

 

 

 

 

 

 

 

(a)         (b) 

Figure 3.13.4.11 Scale function and wavelet function of Bior3.7 wavelet for (a) analysis 

and (b) Synthesis 

 

 

 

 

 

 

 

 

 

(a)         (b) 

Figure 3.13.4.12 Scale function and wavelet function of Bior3.9 wavelet for (a) analysis 

and (b) Synthesis 

 

 

 

 

 

 

 

 

(a)         (b) 

Figure 3.13.4.13 Scale function and wavelet function of Bior4.4 wavelet for (a) analysis 

and (b) Synthesis 
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(a)         (b) 

Figure 3.13.4.14 Scale function and wavelet function of Bior5.5 wavelet for (a) analysis 

and (b) Synthesis 

 

 

 

 

 

 

 

(a)         (b) 

Figure 3.13.4.15 Scale function and wavelet function of Bior6.8 wavelet for (a) analysis 

and (b) Synthesis 

 

General characteristics of Biorthogonal wavelets are: 

 The supporting width of wavelet 2Nr + 1 for reconstruction and 2Nd + 1 for 

decomposition.  

 The number of vanishing moments of  is Nr. 

 The analysis is not orthogonal. 

 Filter length is max (2Nr, 2Nd) + 2. 

 Discrete wavelet transforms and continuous wavelet transform is possible. 

 It doesn’t have explicit expression except for splines. 

 It is symmetrical. 

 It is arbitrary regular. 

 Exact reconstruction is possible. 

 It is implemented by using FIR filters. 

 Fast algorithm is possible. 
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3.14.0 THE DISCRETE WAVELET TRANSFORMS 

 Calculating wavelet coefficients at every possible scale is a fair amount of work, 

and it generates huge amount of data. If only a subset of scale, and positions the data are 

selected then the size of the data may be reduced significantly. It turns out, rather 

remarkably, that if scales and positions base on the power of two are selected (so called 

dyadic scales and positions), then the analysis will be much more efficient and accurate. 

And such analysis is possible from the discrete wavelet transform. In the case of 

Continuous Wavelet Transform the scaling ‘a’ and delay ‘b’ are assumed to be continuous 

in value and hence in a result of continuous wavelet transform redundancy of signal is 

present. This redundancy can be reduced by discretizing the transform parameter (a, b).  

zj1,0a,
j
0

aa      ---3.14.1 

Where a0 is constant but not equal to one, and m is any positive integer. Parameter b 

is also chosen as power of two. 

zkwherek.a
j
0

k.ab      

If a0 = 2, a = 2
j
 and b = k 2

j
  

The Discrete Wavelet Transform of continuous time signal is given by the equation. 

 
R

dtbaC (t)ψs(t)),( ab     ---3.14.2 

Where  ab (t) = 
a

bt

a

)(1 
 and a = 2

j
, b = k 2

j
,         (j,k) Z

2
 

In 1998, Ingrid Daubechies and Mallet [12] discovered that the wavelet transform 

could be implemented with a specially designed Finite Impulse Response (FIR) filter pair. 

The filter banks are in effect a fast way of implementing the Discrete Wavelet Transform 

for orthogonal wavelets the filter banks are a set of Quadrature Mirror Filters [81]. 

The analysis bank has two filters low pass and high pass. These filter separate the 

input signal into low and high frequency banks. This process is called as wavelet 

decomposition. The low frequency components of the signal are known as approximations 

and high frequency components are known as details. When one performs the filtering 

operation on real digital signal, then it winds up with twice as much data as one started with 



 94 

[12]. Using down sampling after the filtering solves this problem. Figure 3.14.1 shows one-

stage Discrete Wavelet Transform of signal ‘S’. 

 

 

 

 

 

 

Figure 3.14.1 one-stage Discrete Wavelet Transform of signal S 

Where h1[n] and g1[n] are the  impulse response of low pass and high pass filter, and cD 

and cA are detail coefficients and approximate coefficients of signal S.   

It is observed that the actual length of the detail and approximation coefficients 

vectors are slightly more than half of the length of the original signal, because filtering 

process is implemented by convolving the signal with filter.  

The decomposition process can be iterated, with successive approximations being 

decomposed in turn, so that one signal is broken down into many lower resolution 

components. This is called the wavelet decomposition tree as shown in figure 3.14.2. 

 

 

 

 

 

 

 

 

 

 

Figure 3.14.2 Three level decomposition tree 

The wavelet reconstruction process is just reversed to the decomposition process. It 

consists of up sampling and filtering as shown in figure 3.14.3. 
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Figure 3.14.3 Signal reconstruction process  

Where h2[n] and g2[n] are the  impulse response of low pass and high pass filter, and cD 

and cA are detail coefficients and approximate coefficients of signal S. 

3.15.0 TWO DIMENSIONAL DWT 

 Two dimensional wavelet transform is applicable to analyze the two-dimensional 

signal such as image. A two-dimensional wavelet transform is readily computed by 

combining the one-dimensional basis transform for both the dimensions (horizontal and 

vertical). In two dimensional wavelet transform the process breaks the original band into 

four sub-bands: one tuned for low frequency (approximation), one tuned for vertical high 

frequency (vertical details), one tuned for horizontal high frequency (horizontal detail), and 

one tuned for both orientations of diagonal high frequency (diagonal details). This kind of 

two-dimensional DWT leads to decomposition of approximation coefficients at level j in 

four components: the approximation at level j+1 and the details in three orientations 

(horizontal, vertical and diagonal). The figure 3.15.1 shows the basic decomposition steps. 

 

 

 

 

 

 

 

 

Figure 3.15.1 Two-Dimensional DWT Decomposition 

S 

h2[n] cA 

cD 2 

2 

g2[n] 

columns 

rows 

rows 

Lo_D 

Hi_D 

Lo_D 

Hi_D 

Lo_D 

Hi_D 

2    1 

2    1 

1    2 

1    2 

1    2 

1    2 

cAj 
columns 

cAj+1 

cDj+1 

horizontal 

cDj+1 

vertical 

cDj+1 

diagonal 



 96 

The decomposition phase has two filters: low pass and high pass. These filters 

separate the input signal into low and high frequency components. The two-dimensional 

signal first filtered row wise, and down sampled by the amount of two. Then, the procedure 

is repeated for the column components of two-dimensional signals. This process is called as 

wavelet decomposition of two-dimensional signal. The low frequency components of row 

and column of two-dimensional signals are known as approximations, low frequency 

components of row and high frequency components of column of two-dimensional signal 

are known as horizontal details, high frequency components of row and low frequency 

components of column of two-dimensional signal are known as vertical details, and high  

frequency components of row and high frequency components of column of two-

dimensional signal are known as diagonal.  

 

 

 

 

 

 

 

 

Figure 3.15.2 shows the basic reconstruction steps 

In reconstruction stage the approximate and detail components are first up sampled 

with the factor of two, and the row components, and column components are separately 

filtered with the reconstruction low pass, and high pass filters. Sum of the filtered 

components are again up sampled with the factor of two, and again filtered with low pass 

and high pass filters. The filtered components when added reconstruct the original signal. 

3.16.0 WAVELET PACKET  

The weakness of wavelet transform is that it fails to capture high frequency 

components of an image, and hence, another transform method must be employed. 

Coifman, Meyer and Wickerhauser developed the technique, which was based on the 

wavelet transform and known as wavelet packets. Wavelet packets are better able to 

represent the high frequency information [74]. 
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Wavelet packets represent a generalization of multi-resolution decomposition. In 

wavelet, the decomposition is applied recursively to the coarse scale approximation, 

whereas in the wavelet packets decomposition, the recursive procedure is applied to the 

coarse scale approximation along with horizontal detail, vertical detail, and diagonal detail, 

which leads to a complete binary tree. Wavelet packets is an extension of the octave band 

wavelet decomposition to a full tree decomposition by allowing the low pass filtering, high 

pass filtering and down sampling procedure to be iterated on approximate and details. High 

pass branches in the tree, add more flexibility in frequency resolution. Wavelet packets 

decomposition leads to the 4
J 
sub-bands at decomposition level ‘J’ [79].  

Tree structure of wavelet packets decomposition up to third level is shown in figure 

3.16.1.  

 

 

 

 

 

 

 

Figure 3.16.1:The tree structure of wavelet packets decomposition up to third level 

 

The original signal S, referred as (0,0) is decomposed at first level to generate four 

successors as approximation (1,0), horizontal detail (1,1), vertical detail (1,2), and diagonal 

detail (1,3).  Further, these successors are decomposed at second level to generate total 

sixteen successors namely (2,0), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (2,7), (2,8), (2,9), 

(2,10), (2,11), (2,12), (2,13), (2,14), (2,15). Similar process is carried out at third level also 

to yield total sixty-four successors as leaves of the tree. Decomposition process includes 

low pass, high pass filtering for rows of two-dimensional signal followed by down 

sampling with amount of two. Then, the procedure is repeated for the column components 

of two-dimensional signals.  
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CHAPTER 4 

IMPLEMENTATION OF ALGORITHMS  

 

4.1.0 INTRODUCTION 

Literature survey reveals that the majority of the compression techniques used 

were focused on Discrete Cosine Transform (DCT) and Discrete Wavelet Transform 

(DWT). The Discrete Wavelet Transform (DWT) has become the popular transform for 

image compression. The varieties of Discrete Wavelet Transform (DWT) were invented 

and used for image compression. The Discrete Wavelet Transforms have many 

advantages and disadvantages, which are already discussed in chapter two. The 

fundamentals of wavelet and wavelet packet tree are discussed in chapter three. There is 

a wide scope to develop the new methods of image compression using wavelet packet 

tree. Generally the image compression methodology is constituted by three stages 

mainly: i) Transformation ii) Qunatization / Thresholding, and iii) Encoding. For the 

optimum image compression, that is, high compression ratio and good visual image 

quality, there is a need, to select appropriate and efficient transformation technique, to 

select the proper values of threshold, and efficient encoding technique.  This chapter 

includes: selection of wavelet transform, the comparison of wavelet and wavelet packet 

tree, selection of best basis based on various entropies, proposed technique of best basis 

selection, proposed adaptive threshold calculations based on nature of image, modified 

lossy encoding techniques with quantitative results, and intermediate conclusions.  

4.2.0 WAVELET SELECTION FOR IMAGE COMPRESSION 

Haar [23] described the first wavelet basis in 1910. In 1986 many researchers 

performed pioneering work in wavelets, particularly in multi-resolution and fast wavelet 

transforms. The researchers developed a wide variety of wavelets. The major wavelets 

are Daubechies Wavelet, Coiflets Wavelet, Biorthogonal Wavelet, Symlets Wavelet, 

Morlet Wavelet, and Mayer Wavelet. These wavelets are used to transform the signals 

from one domain to another domain. Wavelet transform is a two-dimensional time-

frequency signal analysis method. Wavelet Transform (WT) represents an image as a 

sum of wavelet functions (wavelets) with different locations and scales [86]. Any 

decomposition of an image using wavelet involves a pair of waveforms, one to represent 

the high frequencies corresponding to the detail parts of an image (wavelet function), 

and another for the low frequencies or smooth parts of an image (scaling function). 

Integer Wavelet Transform and Discrete Wavelet Transform would be used for lossy 
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compression. In the paper [41] the researchers claimed that Integer Wavelet Transform 

could lead to too much larger degradation than the Discrete Wavelet Transform; 

especially Discrete Wavelet Transform is popular in the field of compression for small 

quantization rather than Integer Wavelet Transform. All the wavelets are not suitable for 

the image compression. Among the many suitable wavelets, for image compression 

choice of wavelet is crucial for coding performance in image compression [5]. The 

choice of the wavelet function should be adjusted to image content. The compression 

performance for images with high spectral activity is fairly insensitive to choice of 

compression method (for example, test image Mandrill), on the other hand coding 

performance for the images with moderate spectral activity (for example, test image 

Lena), are more sensitive to choice of compression method.  The best way for choosing 

wavelet function is to select optimal basis for images with moderate spectral activity. 

This wavelet gives satisfying results for other types of images. It is also noticed that 

selection of the optimal wavelet for image compression is based on objective picture 

quality measures, and subjective picture quality measures.  

Important properties of wavelet in image compression are:  compact support 

(leads to efficient implementation), symmetry (useful in avoiding dephasing in image 

processing), orthogonality (allows fast algorithm), regularity and degree of smoothness 

(related to filter order or filter length) [86]. These properties of most of the well-known 

wavelets are discussed in detail in chapter three. The wavelets are implemented by using 

different ordered quadratic filters. The subband coding system is based on the frequency 

selectivity property of the filter banks. An alias free frequency split and perfect inter-

band decorrelation of coefficients can be achieved only with ideal filter bands with 

infinite duration basis functions. Since time localization of the filters is very important 

in visual signal processing, one cannot use an arbitrarily long filter. In addition 

properties such as vanishing moments, phase linearity, time-frequency localization, 

energy compaction etc., influence the coding performance. Filter length is determined 

by filter order, the relationship between filter order and filter length is different for 

different wavelet families. Higher filter order gives wide function in the time domain 

with higher degree of smoothness its results blurring of an image even if the PSNR is 

high, and filter has good frequency localization, which in turns increases, the energy 

compaction. The regularity of wavelets also increases with filter order. In addition more 

vanishing moments can be obtained with a higher order filter. Filter with lower order 

has a better time localization and preserves important edge information. The low order 

filters provides less energy compaction and more blockiness. Wavelet based image 
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compression prefers smooth functions, but complexity of calculating Discrete Wavelet 

Transform increases by increasing the filter length. Therefore, in image compression 

there is a need to find a balance between filter length, degree of smoothness and 

computational complexity. Inside each wavelet family, one can find wavelet function 

that represents optimal solution related to filter length and degree of smoothness, but 

this solution depends on image contents [86]. The length of the filter and computational 

complexity of the wavelet transform for an image of size M × M, employing dyadic 

decomposition is approximately. 

L = 2 × N for Daubechies Wavelet family, 

L = 6 × N for Coiflet Wavelet Family and 

L = max (2Nd, 2Nr) + 2 for Biorthogonal Wavelet family 

Computational Complexity, C = 16 × M
2
 × L (1 – 4

-J
) / 3 

Where N is the order of filter, L is the length of the filter; J is number of level 

decomposition. 

 In the analysis process four families of wavelets, mostly used and examined by 

the researchers named as: Haar wavelet, Daubechies wavelet, Coiflet wavelet, and 

Biorthogonal wavelet. These wavelets are tested over many test images, which include 

different natural images of varying frequencies, and synthetic images having 

characteristics different than natural images. Each wavelet family can be parameterized 

by integer N, which determines the filter order. Biorthogonal wavelets can use filters 

with similar or dissimilar order for decomposition and reconstruction of signals. Nd 

denotes the order of decomposition filter, and Nr denotes the order of reconstruction 

filter. Each wavelet family is tested with different filter orders. The Daubechies 

wavelets dbN is tested for the order of filter, N = 1 to 44, the Coiflet wavelet CoifN is 

tested for the order of filter, N = 1, 2, 3, 4, 5; and the Biorthogonal wavelet Bior NrNd is 

tested for the order of reconstruction and decomposition filter (Nr . Nd) = 1.1, 1.3, 1.5, 

2.2, 2.4, 2.6, 2.8, 3.1, 3.3, 3.5, 3.7, 3.9, 4.4, 5.5, and 6.8. The experimental results are 

given in terms of percentage of zeros, energy retained, and peak signal to noise ratio for 

the fixed value of threshold. The peak signal to noise ratio is one of the important 

objective measures. Higher the value of PSNR better the quality of an image, more 

percentage of zeros might be responsible for more compression, and high value of the 

energy retained shows the less loss of the information. 

Table 4.2.1 to 4.2.5 shows the comparative results of wavelet db1 to db45 for 

different natural and synthetic images. Table 4.2.6 to 4.2.10 shows the comparative 

results of wavelet Bior1.1 to Bior6.8 for different natural and synthetic images. Table 
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4.2.11 to 4.2.15 shows the comparative results of wavelet Coif1 to Coif5 for different 

natural and synthetic images. The results are given in terms of percentage of zeros, 

energy retained, and peak signal to noise ratio. The natural test images are Aishwarya, 

Cheetah, Lena, Woman, Barbara, Mandrill, and synthetic test images are butterfly, 

diagonal line based images, vertical line based images, and horizontal line based 

images.  
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Table 4.2.1 Results of Daubechies wavelets dbN (where N = 1 to 44) for Aishwarya 

and Cheetah images  

 

Wavelet 

AISHWARYA CHEETAH 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

db1 92.515 99.8901 82.9103 88.5544 99.773 71.361 

db2 93.1336 99.9464 89.9897 90.2095 99.8496 75.3626 

db3 93.1808 99.9561 91.9226 90.515 99.8677 76.6027 

db4 93.0832 99.9591 92.476 90.4597 99.8769 77.2279 

db5 93.1008 99.9616 92.8383 90.5461 99.8869 78.0073 

db6 93.0035 99.963 93.1425 90.2583 99.8957 78.8606 

db7 92.9712 99.9624 92.9496 90.1724 99.9025 79.5673 

db8 92.8942 99.9633 93.0017 90.0284 99.9055 79.877 

db9 92.8538 99.9642 93.1481 90.0271 99.9042 79.5326 

db10 92.7375 99.9645 93.1523 89.9486 99.9071 79.1013 

db11 92.693 99.9643 93.09 89.8772 99.8986 79.0239 

db12 92.5936 99.9651 93.1111 89.7706 99.901 79.1585 

db13 92.5617 99.9642 93.0721 89.6793 99.9042 79.574 

db14 92.4536 99.9645 92.824 89.4334 99.9071 80.045 

db15 92.4031 99.9643 92.8945 89.3155 99.9093 80.2545 

db16 92.3236 99.9635 92.8266 89.2107 99.9081 80.155 

db17 92.2705 99.9643 92.6923 89.1185 99.9044 79.747 

db18 92.1824 99.9632 92.6993 89.084 99.9016 79.3924 

db19 92.1767 99.9642 92.7258 89.1027 99.9014 79.3373 

db20 92.0505 99.963 92.4308 88.7479 99.9027 79.6414 

db21 92.0348 99.9631 92.514 88.8215 99.9043 79.8837 

db22 91.9617 99.9642 92.4659 88.6029 99.9065 80.258 

db23 91.9298 99.9614 92.1929 88.4092 99.9051 80.2552 

db24 91.8647 99.9631 92.2589 88.4261 99.9042 80.0913 

db25 91.822 99.9632 92.2884 88.4178 99.9016 79.6871 

db26 91.7446 99.9626 92.1675 88.2374 99.8999 79.5619 

db27 91.7181 99.9635 92.152 88.2947 99.9 79.5961 

db28 91.6306 99.9624 92.0132 88.1738 99.9008 79.6998 

db29 91.607 99.9626 91.9303 87.9984 99.903 80.1496 

db30 91.5358 99.9623 91.8635 87.8645 99.9033 80.3484 

db31 91.4883 99.9621 91.7832 87.873 99.9021 80.1254 

db32 91.4269 99.9613 91.6806 87.6527 99.9005 80.0021 

db33 91.392 99.962 91.7793 87.7164 99.8984 79.6744 

db34 91.2833 99.9622 91.6369 87.6492 99.8969 79.463 

db35 91.2929 99.9608 91.6279 87.5358 99.8981 79.6343 

db36 91.1922 99.9617 91.5382 87.3335 99.8996 79.8305 

db37 91.1729 99.9599 91.3749 87.3335 99.9001 79.9594 

db38 91.0956 99.9612 91.3469 87.0985 99.9016 80.1797 

db39 91.0747 99.9598 91.3551 86.9662 99.9004 80.0921 

db40 91.0126 99.96 91.2378 87.0167 99.8998 79.8067 

db41 90.9727 99.9612 91.2972 86.9191 99.8985 79.5819 

db42 91.2929 99.9608 91.6279 87.5358 99.8981 79.6343 

db43 91.1729 99.9599 91.3749 87.3335 99.9001 79.9594 

db44 91.0747 99.9598 91.3551 86.9662 99.9004 80.0921 
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Table 4.2.2 Results of Daubechies wavelets dbN (where N = 1 to 44) for Lena and 

Woman images 

Wavelet LENA WOMAN 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

db1 91.1836 99.8702 79.6658 78.3301 99.6721 65.0408 

db2 92.4404 99.933 86.1184 80.4057 99.6941 65.5944 

db3 92.7403 99.9454 88.0905 80.9294 99.7133 65.8308 

db4 92.7068 99.951 89.031 81.0816 99.721 65.9379 

db5 92.7186 99.9535 89.478 80.7867 99.735 66.0668 

db6 92.6819 99.9552 89.7161 81.0561 99.7366 65.9977 

db7 92.6472 99.9563 89.8909 80.8188 99.7465 66.0396 

db8 92.5582 99.9566 89.8198 80.7029 99.749 65.9844 

db9 92.5291 99.959 89.9924 80.4564 99.7773 66.0426 

db10 92.4682 99.9592 90.0067 80.5045 99.7783 66.0189 

db11 92.4298 99.958 89.8304 80.14 99.7676 66.0174 

db12 92.3296 99.9589 89.8477 80.0252 99.7707 65.9982 

db13 92.3487 99.959 89.7844 79.8227 99.7773 66.0597 

db14 92.2401 99.9592 89.7291 79.5312 99.7783 66.0011 

db15 92.1995 99.9595 89.7272 79.4413 99.7843 65.9779 

db16 92.1455 99.9601 89.6914 79.2044 99.7866 65.9706 

db17 92.107 99.9599 89.6199 79.0838 99.7923 65.9781 

db18 92.0079 99.9601 89.4307 78.9788 99.7945 65.9262 

db19 92.0082 99.961 89.5035 78.8199 99.7977 65.8304 

db20 91.9199 99.9603 89.4201 78.6394 99.7996 65.8367 

db21 91.8787 99.9603 89.2959 78.1963 99.8062 65.8968 

db22 91.8103 99.9617 89.3957 78.2304 99.8086 65.9645 

db23 91.7799 99.9616 89.3471 77.9205 99.8126 65.9127 

db24 91.6912 99.9618 89.1455 78.0109 99.8138 65.8101 

db25 91.6771 99.9628 89.2491 77.8227 99.817 65.7777 

db26 91.5996 99.963 89.1445 77.6906 99.8207 65.8762 

db27 91.5676 99.963 89.0055 77.4395 99.8225 65.8504 

db28 91.501 99.9637 88.9942 77.4949 99.8213 65.7463 

db29 91.4814 99.9641 89.076 77.2088 99.8251 65.7189 

db30 91.382 99.964 88.8462 77.1548 99.8238 65.7188 

db31 91.3756 99.965 88.9181 77.1762 99.8287 65.7845 

db32 91.2949 99.9654 88.9856 76.9799 99.8292 65.7691 

db33 91.2653 99.965 88.7309 76.9165 99.8311 65.6901 

db34 91.1967 99.9655 88.724 76.8687 99.8321 65.7176 

db35 91.182 99.9659 88.737 76.5212 99.8333 65.6477 

db36 91.0873 99.9657 88.5533 76.4937 99.8339 65.7218 

db37 91.0683 99.9663 88.6598 76.3784 99.8356 65.7157 

db38 91.0055 99.9664 88.602 76.1415 99.8369 65.6556 

db39 90.961 99.9661 88.5301 76.1926 99.8385 65.631 

db40 90.8878 99.9667 88.5193 76.0546 99.8389 65.6728 

db41 90.8854 99.9671 80.5068 74.844 99.7005 51.4404 

db42 91.182 99.9659 88.737 74.5983 99.7037 51.4772 

db43 91.0683 99.9663 8836598 74.6984 99.7043 51.4725 

db44 90.961 99.9661 88.5301 74.4872 99.7056 51.4063 
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Table 4.2.3 Results of Daubechies wavelets dbN (where N = 1 to 44) for Barbara 

and Mandrill images 

 

Wavelet BARBARA MANDRILL 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

db1 87.1597 99.7161 73.0629 76.8967 99.6125 67.5123 

db2 88.9319 99.7539 74.1302 78.428 99.6596 68.6186 

db3 89.3148 99.7714 74.7091 78.8176 99.6804 69.1943 

db4 89.0538 99.7847 75.0357 78.9087 99.6887 69.3453 

db5 89.1265 99.7909 75.243 79.0197 99.686 69.2509 

db6 88808 99.7963 75.2605 78.5821 99.6874 69.2263 

db7 88.58 99.7998 75.3643 78.5166 99.6879 69.2499 

db8 88.4457 99.8009 75.2876 78.4807 99.6954 69.4104 

db9 88.3398 99.8027 74.9577 78.4537 99.6992 69.5291 

db10 87.9506 99.804 74.9891 78.1187 99.699 69.6357 

db11 87.9154 99.8019 74.995 78.0738 99.7082 69.5994 

db12 87.5889 99.8048 74.995 78.0345 99.7043 69.3326 

db13 87.43 99.8027 74.8796 77.8264 99.6992 69.1481 

db14 87.2296 99.804 74.9475 77.6767 99.699 69.037 

db15 87.0011 99.8039 74.9935 77.532 99.699 69.03 

db16 86.8363 99.8005 74.7221 77.2553 99.7071 69.229 

db17 86.7069 99.8007 74.7524 77.2944 99.7119 69.3503 

db18 86.4457 99.8038 74.7725 77.194 99.7182 69.5347 

db19 86.406 99.7994 74.5143 76.9279 997188 69.4952 

db20 86.1632 99.8003 74.5305 76.711 99.7155 69.2789 

db21 85.9969 99.8008 74.6578 76.6237 99.7108 69.0813 

db22 85.7993 99.7981 74.5201 76.6172 99.7098 68.9438 

db23 85.6947 99.7971 74.43 76.4294 99.707 68.8774 

db24 85.3532 99.805 74.6468 76.4681 99.7109 68.9524 

db25 85.3904 99.8015 74.4353 76.4327 99.7169 69.0963 

db26 85.0818 99.8016 74.3401 76.2151 99.7208 69.2202 

db27 85.0481 99.8057 74.4992 75.9922 99.7246 69.2989 

db28 84.7256 99.8061 74.3021 75.818 99.7235 69.1524 

db29 84.542 99.8063 74.2774 75.7448 99.7196 68.9872 

db30 84.3229 99.8079 74.2628 75.6911 99.7193 68.9154 

db31 84.1736 99.8086 74.1562 75.639 99.7177 68.8359 

db32 83.8732 99.8125 74.2704 75.4285 99.7215 68.9008 

db33 83.7694 99.8157 74.1933 75.4448 99.7254 68.9378 

db34 83.79 99.8185 74.1339 75.4691 99.7272 69.0129 

db35 83.7517 99.8184 73.9985 74.9451 99.7293 69.0045 

db36 83.272 99.8244 74.1678 74.6917 99.7312 68.9952 

db37 83.3866 99.8252 74.1161 74.6508 99.7284 68.8705 

db38 83.0422 99.8284 74.1828 74.5019 99.7303 68.8227 

db39 82.904 99.83 74.0552 74.3695 99.7309 68.8456 

db40 82.9162 99.8349 74.0831 74.4241 99.7339 68.8631 

db41 83.2574 99.8172 74.6266 74.3731 99.737 68.8907 

db42 83.6486 99.8179 74.4971 74.9451 99.7293 69.0045 

db43 83.524 99.8201 74.6274 74.6508 99.7284 68.8705 

db44 83.355 99.8182 74.5536 74.3695 99.7309 68.8456 
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Table 4.2.4 Results of Daubechies wavelets dbN (where N = 1 to 44) for Butterfly 

and Diagonal line based images 

 

Wavelet BUTTERFLY                            DIAGONAL 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

db1 86.4705 99.9265 77.696 87.5977 99.9197 91.9933 

db2 87.7887 99.9383 78.9313 86.1275 99.8096 82.3133 

db3 88.247 99.9417 78.9407 85.9898 99.7649 80.0928 

db4 88.209 99.945 79.0793 85.8933 99.7392 78.9862 

db5 88.1094 99.9467 78.8936 84.995 99.7145 78.0282 

db6 87.8601 99.9487 78.8845 84.1694 99.7191 78.0653 

db7 87.6895 99.9493 78.5626 84.1664 99.6791 76.3245 

db8 87.5319 99.9509 78.5108 83.4593 99.6592 75.7316 

db9 87.4588 99.9552 78.2602 83.3084 99.5974 75.4996 

db10 87.2466 99.956 78.237 83.0524 99.5924 74.9992 

db11 87.1586 99.9537 78.1167 82.7066 99.6112 74.1537 

db12 86.9933 99.9545 77.9975 82.3688 99.5952 73.4982 

db13 86.6499 99.9552 77.8455 82.2467 99.5974 73.6943 

db14 86.4797 99.956 77.8209 81.9104 99.5924 73.278 

db15 86.316 99.956 77.5317 81.5652 99.5769 72.8681 

db16 86.1592 99.9561 77.4309 81.288 99.5709 72.6657 

db17 85.9717 99.9661 77.2761 80.9188 99.5689 72.5851 

db18 85.9519 99.9563 77.1587 81.1205 99.5581 72.0575 

db19 85.7018 99.9561 77.0458 81.2034 99.5442 71.666 

db20 85.4464 99.9562 76.9535 80.5039 99.5376 71.3909 

db21 85.2473 99.9564 76.8675 80.4507 99.54 71.3749 

db22 85.0479 99.9561 76.7013 80.6836 99.5364 71.157 

db23 84.785 99.9562 76.683 80.2946 99.5257 70.8587 

db24 84.7686 99.9551 76.4101 80.092 99.5184 70.494 

db25 84.5249 99.9556 76.4639 80.2632 99.5101 70.2488 

db26 84.4186 99.9558 76.454 80.0424 99.5273 70.5568 

db27 84.2166 99.9556 76.2444 80.0043 99.5105 70.0436 

db28 84.0944 99.9553 76.1594 79.9533 99.5047 69.7915 

db29 83.7766 99.9553 76.0854 79.74 99.5079 69.6615 

db30 83.5709 99.9546 75.8353 79.4393 99.5106 69.6963 

db31 83.4976 99.9545 75.7772 79.7148 99.5008 69.3112 

db32 83.2613 99.4547 75.7602 79.3316 99.496 69.1422 

db33 83.1851 99.9547 75.7418 79.3499 99.5029 69.1031 

db34 83.0677 99.955 75.6355 79.2109 99.4997 69.0201 

db35 82.8755 99.9547 75.5948 79.2261 99.4903 68.8425 

db36 82.7101 99.9541 75.4735 78.964 99.4828 68.511 

db37 82.4999 99.9543 75.3941 78.9254 99.4861 68.483 

db38 82.361 99.9538 75.2885 78.8894 99.4982 68.6986 

db39 82.0555 99.9534 75.0989 78.4696 99.475 68.2346 

db40 82.0395 99.9532 75.0895 78.6555 99.4729 67.9834 

db41 81.9044 99.9532 75.0625 78.6705 99.4753 68.0288 

db42 82.8755 99.9547 75.5948 79.2261 99.4903 68.8425 

db43 82.4999 99.9543 75.3941 78.9254 99.4861 68.483 

db44 82.0555 99.9534 75.0989 78.4696 99.475 68.2346 
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Table 4.2.5 Results of Daubechies wavelets dbN (where N = 1 to 44) for Horizontal 

and Vertical line based images 

Wavelet HORIZONTAL VERTICAL 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

db1 90.5807 99.9998 141.8606 89.6906 99.9994 129.0678 

db2 87.9801 99.9764 92.1412 87.6507 99.9737 92.0882 

db3 86.0544 99.9813 94.739 85.7543 99.9644 89.0369 

db4 86.3986 99.967 89.0313 84.3615 99.9604 88.0752 

db5 83.8869 99.9678 88.9092 82.8151 99.9712 91.7549 

db6 83.4849 99.9598 86.7037 83.1172 99.9436 84.5041 

db7 83.4699 99.9637 87.3624 81.4279 99.9513 86.2282 

db8 82.7425 99.9482 83.9312 80.6732 99.9411 83.9541 

db9 81.8921 99.9516 83.2115 80.9066 99.9458 84.7572 

db10 82.0809 99.9484 85.7097 80.7984 99.9482 82.4657 

db11 81.6307 99.9521 84.4208 79.2368 99.9452 83.3758 

db12 80.3611 99.9494 83.9313 78.9336 99.9349 81.0413 

db13 79.5822 99.9516 84.3359 78.2297 99.9458 83.439 

db14 79.1497 99.9484 83.4058 77.3262 99.9482 84.2376 

db15 78.1144 99.9599 85.6589 77.412 99.9327 80.5607 

db16 78.2833 99.9477 82.552 76.5705 99.9387 81.9401 

db17 77.5908 99.9558 84.6852 76.8844 99.9305 80.5995 

db18 78.107 99.9496 82.1104 77.2655 99.9365 80.9924 

db19 78.1574 99.9514 82.9466 77.2478 99.9174 77.6881 

db20 77.1106 99.9364 79.7384 75.5473 99.937 80.9689 

db21 77.1937 99.9353 79.4358 75.7022 99.9225 79.0759 

db22 76.5257 99.9509 81.5729 74.8951 99.9288 80.0012 

db23 76.3786 99.9468 81.0507 74.9125 99.9067 76.6035 

db24 76.0181 99.9379 78.6059 74.795 99.9139 77.9108 

db25 76.6549 99.9411 79.0551 75.2576 99.9252 78.9502 

db26 76.0509 99.945 80.1656 74.8901 99.9187 77.8289 

db27 75.006 99.9549 83.1629 75.3564 99.9051 75.6424 

db28 74.8177 99.9448 80.0043 73.348 99.9191 77.8926 

db29 75.1647 99.9231 76.2631 72.8263 99.9225 78.2648 

db30 73.848 99.9467 80.3597 72.6959 99.9127 77.1094 

db31 74.0339 99.94 78.5886 72.2712 99.9169 77.6733 

db32 72.2468 99.9336 77.34 72.7678 99.9169 77.4971 

db33 73.3881 99.9513 81.5444 73.5048 99.9093 76.6569 

db34 73.9848 99.9427 79.7249 73.8311 99.9187 77.4633 

db35 72.9265 99.9452 80.9512 72.7095 99.9001 75.14 

db36 73.2061 99.9267 77.3958 71.4738 99.9207 77.6825 

db37 72.7884 99.9326 77.7164 71.2882 99.9228 78.4557 

db38 72.967 99.9299 77.6145 71.4682 99.9119 77.2697 

db39 71.9951 99.9411 78.9345 71.5374 99.9064 75.9434 

db40 72.6989 99.9311 79.5928 71.0152 99.9105 76.2003 

db41 73.0846 99.9419 78.7539 71.1963 99.9255 78.1694 

db42 72.9265 99.9452 80.9512 72.7095 99.9001 75.14 

db43 72.7884 99.9326 77.7164 71.2882 99.9228 78.4557 

db44 71.9951 99.5411 78.9345 71.5374 99.9064 75.9434 
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Table 4.2.6 Results of Biorthogonal wavelets Bior NrNd (where Nr.Nd = 1.1 to 6.8) 

for Aishwarya and Cheetah images  

Wavelet AISHWARYA CHEETAH 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Bior1.1 92.515 99.8901 82.9103 88.5544 99.773 71.361 

Bior1.3 92.3279 99.8925 83.1685 87.4506 990774 71.7984 

Bior1.5 92.0145 99.8896 82.7746 86.646 99.7738 71.6622 

Bior2.2 93.1977 99.9577 92.0476 90.2404 99.8871 77.5968 

Bior2.4 92.9932 99.9568 93.0115 89.607 99.8858 78.6389 

Bior2.6 92.8339 99.9568 93.0158 89.1916 99.885 78.9781 

Bior2.8 92.6838 99.9577 93.3433 88.7701 99.8849 79.1754 

Bior3.1 93.1738 99.9622 91.5198 89.8164 99.9123 76.2828 

Bior3.3 92.9691 99.9611 94.0776 89.3159 99.9114 79.0814 

Bior3.5 92.8068 99.9611 95.0184 88.9409 99.9098 80.0858 

Bior3.7 92.6604 99.9611 95.3497 88.502 99.9105 80.7554 

Bior3.9 92.5015 99.9621 95.6907 88.1325 99.909 80.9962 

Bior4.4 93.1709 99.9653 92.7367 90.9208 99.9011 77.9022 

Bior5.5 93.1399 99.9683 91.3622 91.575 99.9054 75.5642 

Bior6.8 92.8618 99.9669 93.6798 90.174 99.9048 79.4862 

 

Table 4.2.7 Results of Biorthogonal wavelets Bior NrNd (where Nr.Nd = 1.1 to 6.8) 

for Lena and Woman images  

Wavelet LENA WOMAN 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Bior1.1 91.1836 99.8702 79.6658 78.3301 99.6721 65.0408 

Bior1.3 90.8806 99.871 79.7226 77.7278 99.6975 65.0371 

Bior1.5 90.6552 99.872 79.5049 76.8835 99.714 64.8894 

Bior2.2 92.7155 99.9501 88.7139 80.9913 99.72 64.9219 

Bior2.4 92.5391 99.9496 89.5255 80.5637 99.7388 65.1403 

Bior2.6 92.3476 99.92492 89.7282 79.9979 99.7531 65.1959 

Bior2.8 92.2153 99.9498 89.8572 79.5679 99.7639 65.1681 

Bior3.1 92.819 99.9576 88.5461 76.159 99.7283 62.2942 

Bior3.3 92.6395 99.958 90.9716 78.6955 99.7377 64.4196 

Bior3.5 92.4972 99.9576 91.8911 78.6477 99.7527 64.8366 

Bior3.7 92.3199 99.958 92.2877 78.4681 99.7657 650012 

Bior3.9 92.2042 99.9572 92.5056 78.0588 99.7754 65.0392 

Bior4.4 92.9063 99.9597 89.3324 81.0144 99.7298 65.9157 

Bior5.5 92.9398 99.9609 87.5979 79.695 99.7228 66.136 

Bior6.8 92.5969 99.9612 90.3925 80.5114 99.7626 66.1039 
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Table 4.2.8 Results of Biorthogonal wavelets Bior NrNd (where Nr.Nd = 1.1 to 6.8) 

for Barbara and Mandrill images 

Wavelet BARBARA MANDRILL 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Bior1.1 87.1597 99.7161 73.0629 76.8967 99.6125 67.5123 

Bior1.3 86.3086 99.7275 73.1251 75.6872 99.6255 67.7541 

Bior1.5 85.6884 99.7303 73.0218 74.5255 99.6312 67.6353 

Bior2.2 89.4328 99.7958 74.9362 79.1526 99.7157 68.1968 

Bior2.4 88.78.56 99.8014 75.4736 78.5208 99.7174 68.6136 

Bior2.6 88.306 99.8024 75.4715 77.9448 99.7253 68.7658 

Bior2.8 87.8296 99.8059 75.5932 77.4888 99.7296 68.7803 

Bior3.1 89.0403 99.8366 72.8833 77.1783 99.7786 65.8669 

Bior3.3 88.4952 99.8332 74.8914 77.3859 99.7698 67.8016 

Bior3.5 87.9842 99.8361 75.588 77.0747 99.7755 68.3526 

Bior3.7 87.4441 99.8327 75.8289 76.7616 99.7772 68.5422 

Bior3.9 87.0677 99.8353 75.9746 76.305 99.7823 68.6782 

Bior4.4 89.5578 99.8028 75.2008 79.5193 99.702 69.0367 

Bior5.5 89.617 99.7902 73.9709 79.0711 99.6887 68.4013 

Bior6.8 88.7139 99.8123 75.6583 78.7894 99.7175 69.51 

 

Table 4.2.9 Results of Biorthogonal wavelets Bior NrNd (where Nr.Nd = 1.1 to 6.8) 

for Butterfly and Diagonal line based images 

Wavelet BUTERFLY DIAGONAL 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Bior1.1 86.4705 99.9265 77.696 87.5977 99.9297 91.9923 

Bior1.3 86.1507 99.9316 77.3916 86.9088 99.9024 99.5234 

Bior1.5 85.8098 99.9371 77.1579 86.0054 99.8807 86.0722 

Bior2.2 88.6174 99.9498 78.915 86.4097 99.78.55 78.9708 

Bior2.4 88.3737 99.9541 79.3845 86.0039 99.7822 79.3556 

Bior2.6 88.021 99.9572 79.4897 85.3134 99.786 79.81 

Bior2.8 87.9198 99.9601 79.5026 84.9226 99.7815 79.3572 

Bior3.1 88.487 99.9526 75.7841 85.2757 99.8322 72.5067 

Bior3.3 88.4205 99.9569 78.0183 84.4357 99.8065 75.3657 

Bior3.5 88.1986 99.9595 78.591 84.478 99.7941 76.9759 

Bior3.7 98.0556 99.9625 78.9449 83.8964 99.7905 76.4806 

Bior3.9 87.7616 99.4696 79.0681 83.5237 99.7966 76.7913 

Bior4.4 88.9876 99.9509 78.891 85.8317 99.7896 81.3103 

Bior5.5 88.8204 99.949 77.9598 85.367 99.7554 79.5208 

Bior6.8 88.5575 99.9578 79.0433 85.0252 99.7802 80.294 

 

 

 

 

 

 



  109 

Table 4.2.10 Results of Biorthogonal wavelets Bior NrNd (where Nr.Nd = 1.1 to 6.8) 

for Horizontal and Vertical line based images 

 

Wavelet HORIZONTAL VERTICAL 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Bior1.1 90.5807 99.9998 141.8606 89.6906 99.9994 129.0678 

Bior1.3 89.827 99.9954 107.8747 88.8065 99.994 106.8088 

Bior1.5 89.2695 99.9983 117.9047 87.4669 99.9949 111.2401 

Bior2.2 88.5299 99.9773 89.091 88.21 99.9561 86.4728 

Bior2.4 88.1099 99.9802 90.1071 87.0784 99.9633 88.4526 

Bior2.6 87.9476 99.9779 89.2849 86.7609 99.9609 87.6797 

Bior2.8 87.8456 99.9736 87.8634 86.3064 99.9608 87.1243 

Bior3.1 87.2012 99.9934 99.336 86.312 99.9878 92.8083 

Bior3.3 86.8935 99.9917 98.7425 85.6395 99.9869 93.8358 

Bior3.5 86.5848 99.9898 98.1983 85.0048 99.9805 93.039 

Bior3.7 86.2401 99.9884 97.1879 84.5695 99.9793 92.2589 

Bior3.9 85.8657 99.9894 96.6793 84.0103 99.9804 92.2369 

Bior4.4 86.9539 99.9586 85.8119 85.3907 99.9458 84.9707 

Bior5.5 85.1037 99.9663 88.9886 83.1772 99.9532 87.9473 

Bior6.8 85.5756 99.9714 88.6548 83.4828 99.9633 88.4515 

 

Table 4.2.11 Results of Coiflet wavelet CoifN (N = 1 to 5) for Aishwarya and 

Cheetah images 

 

Wavelet AISHWARYA CHEETAH 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

coif1 93.0993 99.9472 89.9422 90.2315 99.8519 75.4467 

coif2 92.9629 99.9606 92.5138 90.2167 99.8875 78.1318 

coif3 92.8275 99.9646 93.1689 90.034 99.8983 79.0777 

coif4 92.6025 99.9667 93.4433 89.6852 99.9029 79.4945 

coif5 92.4552 99.9681 93.5706 89.4566 99.9055 79.7609 

 

Table 4.2.12 Results of Coiflet wavelet CoifN (N = 1 to 5) for Lena and Woman 

images 

 

Wavelet LENA WOMAN 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zeros 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

coif1 92.4594 99.9344 86.2557 80.2502 99.7062 65.629 

coif2 92.5852 99.9537 89.4145 80.5051 99.7365 66.0701 

coif3 92.5124 99.9576 90.0661 80.261 99.7604 66.2195 

coif4 92.331 99.9599 90.32 80.0306 99.7733 66.2625 

coif5 92.204 99.9614 90.444 79.6633 99.7882 66.2849 
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Table 4.2.13 Results of Coiflet wavelet CoifN (N = 1 to 5) for Barbara and Mandrill 

images 
Wavelet BARBARA MANDRILL 

Percentage 

of Zero 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zero 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

coif1 88.8473 99.7632 74.4199 78.3398 99.6632 68.6755 

coif2 88.8311 99.7955 75.3616 78.6141 99.6913 69.3394 

coif3 88.4352 99.8072 75.7584 78.4193 99.7032 69.5422 

coif4 87.8656 99.8172 75.6235 78.0875 99.7143 69.6527 

coif5 87.4195 99.8212 75.6718 77.8292 99.7205 69.708 

 

Table 4.2.14 Results of Coiflet wavelet CoifN (N = 1 to 5) for Butterfly and 

Diagonal line based images 

Wavelet BUTTERFLY DIAGONAL 

Percentage 

of Zero 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zero 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

coif1 87.7537 99.9421 79.0146 86.1643 99.8113 82.5575 

coif2 88.2891 99.9508 79.2511 85.5763 99.7848 80.6617 

coif3 88.1259 99.9561 79.1396 85.0207 99.7756 80.1113 

coif4 87.92 99.9599 79.0298 84.5075 99.7752 79.7368 

coif5 87.6613 99.963 78.9415 84.142 99.7706 79.3684 

 

Table 4.2.15 Results of Coiflet wavelet CoifN (N = 1 to 5) for Horizontal and 

Vertical line based images 
Wavelet HORIZONTAL VERTICAL 

Percentage 

of Zero 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

Percentage 

of Zero 

Percentage 

of Energy 

Recover 

Peak 

Signal to 

Noise 

Ratio 

(dB) 

coif1 88.3589 99.9762 92.6496 87.4958 99.9646 90.825 

coif2 86.7364 99.9593 85.8262 84.88 99.9488 85.5071 

coif3 85.3682 99.9672 87.5704 83.3506 99.9575 86.8353 

coif4 84.75 99.9647 86.7689 82.9411 99.9534 85.5086 

coif5 84.084 99.9619 85.6793 82.583 99.9493 84.1841 
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4.2.1 CONCLUSION 

From the results, it is observed that the choice of mother wavelet depends on 

nature of image as described by the researcher [36, 81]. Haar wavelets, which is also 

known as db1, give good results for synthetic images, and db3, db4, db5, db6 give the 

good results for natural images. Daubechies and Coiflet wavelets are families of 

orthogonal wavelets that are compactly supported. Compactly supported wavelets 

correspond to finite impulse response (FIR) filters, and thus lead to efficient 

implementation [5]. It is also observed, that larger number of taps does not imply better 

peak signal to noise ratio, and visual quality.  

A major disadvantage of Daubechies and Coiflet wavelets is their asymmetry, 

which can cause artifacts at borders of the wavelet sub-band, as it is observed in the 

results. Symmetry is one of the important properties of the wavelet transform. It can be 

obtained in wavelet by losing either compact support or orthogonality. Haar wavelet is 

the only wavelet, which is orthogonal, compactly supported and symmetric. Mayer 

wavelet family is non-compactly supported but symmetric, and orthogonal wavelet. For 

this wavelet Discrete Wavelet Transform is possible without Fast Wavelet Transform 

(FWT), its support width is infinite. The use of Mayer wavelets adds computational 

burden, and does not provide efficient implementation. For good visual quality, and 

more compression ratio, wavelet must support symmetry and compact properties. If 

both symmetry and compact support is required in wavelets, then one should relax the 

orthogonality condition and allow non-orthogonal wavelet functions. Bi-orthogonal 

wavelets are compactly supported and symmetric [36].  Results of wavelets for different 

spectral density images are discussed here.  

Aishwarya and Cheetah are widely used natural images, which do not contain 

large amounts of high frequency or oscillating patterns. The peak signal to noise ratio 

and percentage of zeros show that the db3 to db6, and Bior2.2, Bior4.4 wavelets give the 

best performance.  

Lena is widely used natural image that does not contain large amount of high 

frequency or oscillating patterns. The peak signal to noise ratio, and percentage of zeros 

show that the db3 to db7, and Bior2.2, Bior2.4 wavelets give the best performance.  

Barbara is popular choice from the class of natural test images that exhibits large 

amount of high frequency and oscillating patterns. The peak signal to noise ratio and 

percentage of zeros show that the db3, db4, db5, Bior2.2, Bior3.1 and Bior4.4 wavelets 

give the best performance. 
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Mandrill image is another image that is quite difficult to compress significantly. 

In a texture of the Mandrill image, it has a large amount of high frequency content, and 

spread over most of the image. The peak signal to noise ratio and percentage of zeros 

show that the db3, db4, db5, Bior2.2, Bior3.1, and Bior4.4 wavelets give the best 

performance. 

Synthetic test images used for the tests are Butterfly, Diagonal, Horizontal and 

Vertical images. Diagonal, Vertical, and Horizontal images are constructed by using the 

strands of lines. It is observed that for the synthetic images db1 wavelet gives the best 

performance.   

Percentage of zeros in Bi-orthogonal wavelet is decreased by the amount of one 

to two percent as compared to the Daubechies wavelet.  Bi-orthogonal wavelets possess 

the symmetry property, though the percentage of zeros is slightly less than Daubechies 

wavelet, the symmetry property present in Bi-orthogonal wavelets is responsible for 

good visual quality of an image. From comparative study of different wavelets, in still 

image compression techniques, the final choice of optimal wavelet depends on 

subjective and objective image quality measures, and computational complexity. It is 

found that the best of known wavelet is Bior2.2 wavelets. It provides the best visual 

image quality for different image contents with comparable percentage of zeros.  The 

Bior2.2 has low computational complexity in comparison with Bior3.1, Bior4.4, and 

Bior6.8.  

4.3.0 WAVELET AND WAVELET PACKET 

Signals are represented with basis function. For example an impulse is used as 

the basis function in the time domain representation, any function can be represented in 

time domain as a summation of various scaled and shifted impulses. Similarly the sine 

function is used as the basis in the frequency domain representation. However, these 

two-basis functions have their individual weaknesses: an impulse is not localized in the 

frequency domain, and hence impulse function is a poor basis function to be used to 

represent frequency information. Likewise a sine wave is not localized in the time 

domain, and hence, sine function is a poor basis function to be used to represent time 

information. In order to represent complex signals efficiently, a basis function should be 

localized in both time and frequency domains. The support of such a basis function 

should be variable, so that a narrow version of the function can be used to represent the 

high frequency components of a signal, while wide version of the function can be used 

to represent the low frequency components. The function that is localized in time 
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domain as well as in frequency domain, and it is a function of variable parameters. The 

wavelet is an example of such a function; it has variable parameters scale and shift. 

A wide variety of wavelet based image compression schemes had been 

represented in literature ranging from simple entropy coding [27] to more complex 

technique such as vector quantization, adaptive transform, tree encoding, multi-wavelet 

and multi wavelet packet  [16, 74, 78, 79] and edge based coding [31]. In all these 

techniques wavelet transform is used to de-correlate the image data. A pair of 

approximately designed Quadrature Mirror Filter (QMF) can efficiently implement the 

wavelet transform. The low pass and high pass filters are applied to the image in both 

the horizontal and vertical directions, then the filter outputs are sub-sampled by a factor 

of two. It generates four different horizontal frequencies and vertical frequencies 

outputs. These outputs are referred as approximation, horizontal detail, vertical detail, 

and diagonal detail. The approximation contains low frequency horizontal and vertical 

components of the image. Most of the natural images have maximum low frequency 

components, and hence the filtering and sub-sampling process is then repeated on the 

approximation sub-band to generate the next level of the decomposition, and so on. It is 

leading to well known pyramidal decomposition tree. Wavelet yields a multi-scale 

decomposition: low frequency trends occurring at large scale in the image, can be as 

efficiently coded. Wavelets with many vanishing yield sparse decomposition of piece 

wise smooth surface; therefore they provide a very appropriate tool to compactly code 

smooth images. Wavelets however, are ill suited to represent oscillatory patterns [76, 

90] or the wavelet transform often fail to accurately capture high frequency information. 

A special from a texture, oscillating variations, rapid variations in the intensity can only 

be described by the small-scale wavelet coefficients. Unfortunately, these small-scale 

coefficients carry very little energy, and are often quantized to zero even at high bit rate. 

Fingerprint, Barbara, Mandrill, and Seismic signals are few examples of non wavelet-

friendly images [75, 76, 78, 80].  

The weakness of wavelet transform is that it fails to capture high frequency 

components of an image, and hence, another transform method must be employed. 

Coifman, Meyer and Wickerhauser developed the technique, which was based on the 

wavelet transform and known as wavelet packets. Wavelet packets are better able to 

represent the high frequency information [74]. 

Wavelet packets represent a generalization of multi-resolution decomposition. In 

wavelet, the decomposition is applied recursively to the coarse scale approximation, 

whereas in the wavelet packets decomposition, the recursive procedure is applied to the 
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coarse scale approximation along with horizontal detail, vertical detail, and diagonal 

detail, which leads to a complete binary tree. Wavelet packets is an extension of the 

octave band wavelet decomposition to a full tree decomposition by allowing the low 

pass filtering, high pass filtering and down sampling procedure to be iterated on 

approximate and details. High pass branches in the tree, add more flexibility in 

frequency resolution. Wavelet packets decomposition leads to the 4
J 

sub-bands at 

decomposition level „J‟ [79].  

The details of wavelet and wavelet packet are explained in chapter 3. The 

pyramid structure of wavelet decomposition up to third level is shown in figure 4.3.1, 

tree structure of wavelet decomposition up to third level is shown in figure 4.3.2, 

structure of three level decomposition of wavelet packet is shown in figure 4.3.3, and 

tree structure of wavelet packets decomposition up to third level is shown in figure 

4.3.4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.2:The tree structure of wavelet decomposition up to third level 
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Figure 4.3.1:The pyramid structure of wavelet decomposition up to third level 
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In wavelet packets number of sub-bands are more, and hence, there is flexibility 

to the user to select wide range of thresholds, and it results in extracting the important 

information from the sub-bands. The overall result is better compression ratio by 

maintaining the image quality. It is one of the main objectives of this research work. 

Multiwavelets and multiwavelet packets are new areas of research for image 

compression. Complexity of multiwavelets is very high. The researchers [72] claimed 

that the unbalanced multiwavelets usually perform about 0.3 – 1.2 dB worse than the 

balance multiwavelets. In unbalanced multiwavelet packets several checkerboard 

artifacts are observed and bi-orthogonal wavelet achieved 0.2 to 0.5 dB have higher 

peak signal to noise ratio than balanced multiwavelets. The researchers [80] claimed 

that multiwavelet packets typically gave the best results for the synthetic images, and 

wavelet packet gives better results for most of the natural images. By considering time 

LL1LL2 LL1HL2 HL1LL2 HL1HL2 
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Figure 4.3.3:The structure of two level decomposition of wavelet packet 

Figure 4.3.4:The tree structure of wavelet packets decomposition up to third level 
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complexity of multiwavelet packets, the wavelet packet is selected as a tool to 

decompose the image for image compression in the proposed technique. 

The experimental results of wavelet and wavelet packets for few test images are 

examined. The natural test images are Aishwarya, Cheetah, Lena, Woman, Barbara, 

Mandrill, Fingure-print, Bird, Rose, Donkey and synthetic images are Butterfly, 

diagonal line based image, horizontal line based image and vertical line based image. 

The results are given in terms of percentage of zeros, energy reatined and peak signal to 

noise ratio. 

Table 4.3.1 Results of Bi-orthogonal wavelet packets and wavelet for the natural 

and synthetic images 

 Name of the 

image 

Wavelet Packets  Wavelet  

Percentage 

of Zero 

Percentage 

of Energy 

Recover 

Peak 

Signal 

to 

Noise 

Ratio 

(dB) 

Percentage 

of Zero 

Percentage 

of Energy 

Recover 

Peak 

Signal 

to 

Noise 

Ratio 

(dB) 
AISHWARYA 97.1793 99.9334 89.4282 97.0586 99.9399 89.1467 

CHEETAH 92.0904 99.8697 77.0622 91.9023 99.8816 76.8707 

LENA 96.2739 99.9276 86.6867 96.1055 99.9362 86.6578 

WOMAN  83.3723 99.7185 65.0393 83.3889 99.7404 64.6974 

BARBARA 92.2719 99.7805 74.8745 91.7535 99.8011 74.3187 

MANDRILL 67.1875 99.282 45.1783 64.5509 99.4625 48.4843 

FINGURE 91.0963 98.8756 44.0425 91.0793 99.0296 43.3431 

BIRD 96.5036 99.8716 83.2414 96.5066 99.8919 83.8035 

ROSE 83.4973 99.4616 67.7474 83.4729 99.5166 68.7544 

DONKEY 89.457 99.7415 70.5969 89.5955 99.7632 73.8438 

BUTTERFLY 91.11 99.9377 74.9865 91.6432 99.953 78.4872 

DIAGONAL 85.9984 99.4666 68.4852 89.0459 99.7715 78.3489 

HORIZONTAL 91.422 99.9752 88.7784 92.1195 99.9775 88.7484 

VERTICAL 90.3629 99.9534 84.6848 91.6001 99.9552 86.0328 

 

4.3.1 CONCLUSION 

It is observed that for most of natural images percentage of zeros of wavelet 

packets increases than wavelet by the amount of 2.6366 to 0.0437 percent. This change 

is significant for the high frequency images and insignificant for low frequency images. 

For the synthetic images, percentage of zeros decreases by the amount of 1.2372 to 

0.003. There is a negligible change in peak signal to noise ratio. The wavelet packets 

tree preserves the high frequency components, those are lost in wavelet decomposition, 

and therefore it is strongly recommended that the wavelet packets decomposition for 

image compression even though the changes in percentage of zeros is not significant in 

few natural and synthetic images. 
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4.4.0 WAVELET PACKET BEST TREE 

Modern image compression techniques use the wavelet transform for image 

compression. It is observed that wavelet decomposition often fails to accurately capture 

high frequency information even at high bit rates [75]. This limitation of wavelet 

transform is overcome in wavelet packets, and hence it is strongly recommended for 

image compression. Wavelet packets represent a generalization of multi-resolution 

decomposition. In wavelet packets decomposition, the recursive procedure is applied to 

the coarse scale approximation along with horizontal detail, vertical detail, and diagonal 

detail, which leads to a complete binary tree. Wavelet packets decomposition leads to 4
J
 

sub-bands where J is decomposition level„[78]. For three level wavelet packets 

decomposition, number of sub-bands is 4
3
 = 64 and for high-level decomposition 

number of sub-bands are very large. The number of computations are more, and hence, 

it takes more time for decomposition. The wavelet packets has to pay with an increase 

of complexity from O (N) in the wavelet case to ((N log (N)) in the wavelet packet case 

[75, 79]. Where N is number of pixels in an image. To reduce the time complexity of 

wavelet packets decomposition, there is a need to select the sub-bands, which include 

significant information in compact form. The researchers [79, 75, 77] suggested, the 

best basis selection techniques. The selection of the best basis is based on given cost 

function C. The cost function should be separable or additive i.e. 
K

KXXC )()(  , 

where {XK, K= 0, 1, -----, (N – 1)} are the elements of wavelet packet decomposed 

image and  is positive function such that  (0) = 0. 

4.4.1. ROLE OF COST FUNCTION 

 The best basis selection is based on cost function. It is the function of 

information contain in sub-bands. First seminar paper published in 1948, laid the 

foundation of wonderful field of information theory, a theory initiated by the American 

Electrical Engineer, Claude E. Shannon. The notation of the best wavelet packet basis is 

limited to the cost function based on which the full wavelet packet tree is pruned to 

obtain an optimal tree. It is therefore crucial that an appropriate cost function is chosen 

taking into consideration the quantization strategy employed by the coder. When best 

basis selection should be performed, a cost function on transform coefficients is defined, 

which measures the information cost, in the sense of concentration of information. The 

cost function gives the large values, when the coefficients are roughly the same size, 

and small values when all but a few coefficients are negligible. Initially a cost function 

used by Coifman and Wickeshauser [75] is given as  
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It is noticed that h(x) hears no connection with the entropy H(x) of the 

probability distribution of the Xk. If all Xk are equal, then h(x) is maximal, but the 

entropy of the distribution H(x) is minimal. The researchers [77] claimed that, in 

practice h(x) is usually not capable of discovering any meaningful basis. The 

researchers [76, 78 79] have used the Threshold entropy, Log entropy, and Shannon 

entropy criteria as a cost function to select the best basis for the wavelet packets best 

tree. Their algorithm suffers from more time complexity. In proposed research work, the 

suggested algorithms are implemented and tested with low time complexity, and the 

results are compared with new proposed energy based technique and conclusions are 

given. 

4.4.2 ENTROPY 

The average self-information of a random variable X is known as entropy.  

The self information of the event X= Xi is given by: 

)(log
)(

1log)( XiP
XiP

XiI 





           ---4.4.2.1 

where P(Xi) is probability of the coefficient Xi, the amount of information I(Xi) 

is function of coefficient Xi. It gives the information in single outcome, in data 

compression, it is much more interesting to know the average information content of a 

source. This average is given by the expected value of the self-information with respect 

to the source‟s probability distribution. This average of self-information is called the 

source entropy [87]. The entropy of a discrete random variable X is a function of its 

probability mass function and is defined as:  





N

i

XiPXiPXH
1

)(log.)()(           ---4.4.2.2 

Wavelet packets decomposition gives a lot of bases from which we can look for 

the best representation with respective design objectives: time complexity, compression 

ratio, and peak signal to noise ratio. The well-known log entropy would be used as cost 

functions to select the best basis for wavelet packets best tree. Log entropy criteria, 

finds the information content of the signal X, and its log entropy is obtained by the 

equation 





N

l

XiEntropy
1

2)(log           ---4.4.2.3 
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The properties of entropy are, 

a) The entropy is always greater than or equal to zero and less than or equal to N. 

b) H(x) = 0, if and only if the probability P(Xi) = 1 for some „i‟ and the remaining 

probabilities in the set are all zeros. This lower bound on entropy corresponds to no 

uncertainty. 

c) H(x) = log2N, if and only if P(Xi) = 1/N for all „i‟. This upper bound on entropy 

corresponds to maximum uncertainty [88]. 

 It is noted that the high probability event conveys less information than low 

probability event. Shannon entropy, log entropy and threshold entropy are popular to 

use as cost function to select the best basis in wavelet packets compression. 

4.4.3 ALGORITHM FOR BEST BASIS SELECTION 

The researchers [76, 78, 79] suggested the algorithm for best basis selection: 

Firstly wavelet packets decomposition of image at level „J‟ takes place, and cost 

functions of all nodes in the decomposition tree are evaluated. Beginning at the bottom 

(leaf nodes) of the tree, the cost function of each parent node is compared to the sum of 

the cost function of his child nodes. If the parent‟s cost is higher than sum of the cost 

function of his child nodes, then child nodes are considered as leaf nodes of the tree. If 

the parent‟s cost is lower than sum of the cost function of child nodes then child nodes 

are neglected and parent node would be considered as leaf node of tree. This procedure 

is applied recursively at each level of the tree until the top most node (root node) of the 

tree is reached. Obiviously this method is complex and time consuming. In the proposed 

work this method is implemented, tested and published [110, 112, 113]. The algorithms 

are named as Wavelet packets best tree with threshold entropy, wavelet packets best 

tree with log entropy, wavelet packets best tree with Shannon entropy. The time 

complexity of implemented algorithm is low.  

4.4.3.1 SELECTION OF BEST BASIS BASED ON THRESHOLD ENTROPY 

The wavelet packets are offering a more complex and flexible analysis. In 

wavelet packets analysis the details as well as the approximation are splitted. As there is 

large number of sub-bands obtained after the wavelet packets decomposition, the time 

complexity of the algorithm is high. To reduce the time complexity, in this algorithm 

threshold entropy criterion is used to construct the best tree (to select the best basis for 

wavelet packet image compression). Threshold entropy criteria find the information 

contain in signal X. 



  120 







1

0

)(
N

i

ThresholdXiabsEntropy           ---4.4.3.1 

Where Xi is the i
th

 coefficient of sub-band and N is the length of sub-band. 

The information contains of decomposed components of wavelet packets may be 

greater than or less than the information contain of component, which has been 

decomposed. The sum of cost (entropy) of decomposed components (child nodes) is 

checked with cost of component, which has been decomposed (parent node). If sum of 

the cost of child nodes is less than the cost of parent node, then the child nodes are 

considered as leaf nodes of the tree, otherwise child nodes are neglected from the tree, 

and parent node becomes leaf node of the tree. This process is iterated up to the last 

level of decomposition. The generated result is function of threshold, which is used to 

find the cost function. Selection of threshold value is crucial for best basis selection. For 

the experimental results the value of threshold is treated as a constant. 

The time complexity of proposed algorithm is less as compared to algorithm in 

paper [76] is discussed. In the given algorithm, the first wavelet packets decomposition 

of level „J‟ takes place, and cost functions of all nodes in the decomposition tree are 

evaluated. Beginning at bottom of the tree, the cost function of the parent node is 

compared with union of cost functions of child nodes. According to the comparison of 

results the best basis node is selected. This procedure is applied recursively at each level 

of the tree until the top most node of the tree is reached. In proposed algorithm there is 

no need of full wavelet packets decomposition of level „J‟ and no need to evaluate cost 

function of all nodes initially. Algorithm of best basis selection based on Threshold 

entropy is: 

1. Load the image 

2. Set current node equal to input image 

3. Decompose the current node using wavelet packet tree 

4. Evaluate the cost of current node, and decomposed components 

5. Compare the cost of parent node (current node) with the sum of cost of child 

nodes (decomposed components). If the sum of cost of child nodes is greater 

than the parent node, consider the parent node as leaf node of the tree, and child 

nodes are pruned, else repeat the steps 3, 4, and 5 for each child node by 

considering a child node as a current node, until last level of the tree reached. 

This algorithm reduces the time complexity, because there is no need to decompose the 

full wavelet packets tree and no need to evaluate the costs initially. The decision of 

further decomposition, and cost calculation is based on the run time strategy of the 
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algorithm, and it decides at run time whether to retain or prune the decomposed 

components [113]. The flow chart of the above algorithm is given in figure 4.4.3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.3.1: The flow chart of selection of best basis based on threshold entropy  

(Continued) 
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Figure 4.4.3.1: The flow chart of selection of best basis based on threshold entropy  
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The experimental results of the selection of best basis based on threshold 

entropy in terms of percentage of zeros, energy retained and peak signal to noise ratio 

for the natural and synthetic images are given in table 4.4.3.1 

Table 4.4.3.1 Results of selection of best basis based on threshold entropy for the 

natural and synthetic images 

Name of 

The images 

Proposed Wavelet Packet Tree 

Percentage of zeros 
Percentage of 

Energy in retained 
PSNR in dB 

AISHWARYA 97.1604 99.9456 88.82 

CHEETAH 92.8554 99.8748 76.5433 

LENA 96.3538 99.9387 86.4307 

WOMAN  84.6043 99.5216 64.9548 

BARBARA 91.0828 99.7633 73.7503 

MANDRILL 81.9664 99.7082 69.5213 

FINGURE 91.2581 98.9244 72.6834 

BIRD 96.7604 99.8894 83.3235 

ROSE 84.9632 99.4486 69.6195 

DONKEY 89.5941 99.7462 73.9705 

BUTTERFLY 92.0675 99.9438 77.0963 

DIAGONAL 88.8387 99.5876 74.422 

HORIZONTAL 90.0897 99.9692 89.3711 

VERTICAL 87.6484 99.9624 89.7418 

 

4.4.3.2 SELECTION OF BEST BASIS BASED ON LOG ENTROPY  

The wavelet packets are offering a more complex and flexible analysis. In 

wavelet packets analysis the details as well as the approximation are splitted. As there is 

large number of sub-bands obtained after the wavelet packets decomposition, the time 

complexity of the algorithm is high. To reduce the time complexity, in this algorithm 

well known log entropy criterion is used to construct the best tree (to select the best 

basis for wavelet packet image compression). The cost function is used to select the best 

basis in paper [78]. The fast algorithm to select the best basis for wavelet packet best 

tree based on log entropy is implemented and tested. The log entropy criterion finds the 

information contains of transform coefficients of sub-bands. Log entropy is obtained by 

the equation 





N

l

XiEntropy
1

2log           ---4.4.3.2 

Where Xi is the i
th

 coefficient of sub-band and N is the length of sub-band. 

The information contain of decomposed components of wavelet packets may be 

greater than or less than the information contain of component, which has been 

decomposed. The sum of cost (log entropy) of decomposed components (child nodes) is 

checked with cost of component, which has been decomposed (parent node). If sum of 

the cost of child nodes is less than the cost of parent node, then the child nodes are 

considered as leaf nodes of the tree, otherwise child nodes are neglected from the tree, 
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and parent node becomes leaf node of the tree. This process is iterated up to the last 

level of decomposition.  

The time complexity of proposed algorithm is less as compared to the algorithm 

in paper [78] is discussed. In the given algorithm, the first wavelet packets 

decomposition of level „J‟ takes place, and cost functions of all nodes in the 

decomposition tree are evaluated. Beginning at bottom of the tree, the cost function of 

the parent node is compared with union of cost functions of child nodes. According to 

the comparison of results the best basis node(s) is selected. This procedure is applied 

recursively at each level of the tree until the top most node of the tree is reached. In 

proposed algorithm there is no need of full wavelet packets decomposition of level „J‟ 

and no need to evaluate cost function of all nodes initially. Algorithm of best basis 

selection based on Log entropy is: 

1. Load the image 

2. Set current node equal to input image 

3. Decompose the current node using wavelet packet tree 

4. Evaluate the cost of current node, and decomposed components 

5. Compare the cost of parent node (current node) with the sum of cost of child 

nodes (decomposed components). If the sum of cost of child nodes is greater 

than the parent node, consider the parent node as leaf node of the tree, and child 

nodes are pruned, else repeat the steps 3, 4, and 5 for each child node by 

considering a child node as a current node, until last level of the tree reached. 

This algorithm reduces the time complexity, because there is no need to decompose the 

full wavelet packets tree and no need to evaluate the costs initially. The decision of 

further decomposition, and cost calculation is based on the run time strategy of the 

algorithm, and it decides at run time whether to retain or prune the decomposed 

components [112]. The flow chart of the above algorithm is given in figure 4.4.3.2. 

 

 

 



  125 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.3.2: The flow chart of selection of best basis based on Log entropy  

(Continued) 
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Figure 4.4.3.2: The flow chart of selection of best basis based on Log entropy  
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The experimental results of the selection of best basis based on log entropy in 

terms of percentage of zeros, energy retained and peak signal to noise ratio for the 

natural and synthetic images are given in table 4.4.3.2 

Table 4.4.3.2 Results of selection of best basis based on Log entropy for the natural 

and synthetic images 

Name of 

The images 

Proposed Wavelet Packet Tree 

Percentage of zeros 
Percentage of 

Energy in retained 
PSNR in dB 

AISHWARYA 97.3539 99.9453 89.0559 

CHEETAH 93.4543 99.8795 77.5847 

LENA 96.7052 99.9403 86.9598 

WOMAN  82.3964 99.5533 64.9028 

BARBARA 91.6104 99.7769 74.6009 

MANDRILL 81.6895 99.7051 69.3463 

FINGURE 92.1989 98.8912 73.7326 

BIRD 96.8896 99.8824 83.0857 

ROSE 85.1602 99.393 69.3545 

DONKEY 90.0651 99.7285 73.5779 

BUTTERFLY 92.2415 99.9407 76.6458 

DIAGONAL 88.6991 99.7156 77.592 

HORIZONTAL 90.1315 99.9689 91.2219 

VERTICAL 88.3207 99.9468 87.6995 

 

4.4.4.3 SELECTION OF BEST BASIS BASED ON SHANNON ENTROPY  

The wavelet packets are offering a more complex and flexible analysis. In 

wavelet packets analysis the details as well as the approximation are splitted. As there is 

large number of sub-bands obtained after the wavelet packets decomposition, the time 

complexity of the algorithm is high. To reduce the time complexity, in this algorithm 

well known Shannon entropy criterion is used to construct the best tree (to select the 

best basis for wavelet packet image compression). The cost function is used to select the 

best basis in paper [79]. The fast algorithm to select the best basis for wavelet packet 

best tree based on Shannon entropy is implemented and tested. The Shannon entropy 

criterion finds the information contains of transform coefficients of sub-bands. Shannon 

entropy is obtained by the equation 





N

i

XiXiEntropy
1

22 log           ---4.4.3.3 

Where Xi is the i
th

 coefficient of sub-band and N is the length of sub-band. 

The information contain of decomposed components of wavelet packets may be 

greater than or less than the information contain of component, which has been 

decomposed. The sum of cost (Shannon entropy) of decomposed components (child 

nodes) is checked with cost of component, which has been decomposed (parent node). 

If sum of the cost of child nodes is less than the cost of parent node, then the child nodes 

are considered as leaf nodes of the tree, otherwise child nodes are neglected from the 
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tree, and parent node becomes leaf node of the tree. This process is iterated up to the 

last level of decomposition.  

The time complexity of proposed algorithm is less as compared to algorithm in 

paper [79] is discussed. In the given algorithm, the first wavelet packets decomposition 

of level „J‟ takes place, and cost functions of all nodes in the decomposition tree are 

evaluated. Beginning at bottom of the tree, the cost function of the parent node is 

compared with union of cost functions of child nodes. According to the comparison of 

results the best basis node(s) is selected. This procedure is applied recursively at each 

level of the tree until the top most node of the tree is reached. In proposed algorithm 

there is no need of full wavelet packets decomposition of level „J‟ and no need to 

evaluate cost function of all nodes initially. Algorithm of best basis selection based on 

Shannon entropy is: 

1. Load the image 

2. Set current node equal to input image 

3. Decompose the current node using wavelet packet tree 

4. Evaluate the cost of current node, and decomposed components 

5. Compare the cost of parent node (current node) with the sum of cost of child 

nodes (decomposed components). If the sum of cost of child nodes is greater 

than the parent node, consider the parent node as leaf node of the tree, and child 

nodes are pruned, else repeat the steps 3, 4, and 5 for each child node by 

considering a child node as a current node, until last level of the tree reached. 

This algorithm reduces the time complexity, because there is no need to decompose the 

full wavelet packets tree and no need to evaluate the costs initially. The decision of 

further decomposition, and cost calculation is based on the run time strategy of the 

algorithm, and it decides at run time whether to retain or prune the decomposed 

components [110]. The flow chart of the above algorithm is given in figure 4.4.3.3. 
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Figure 4.4.3.3: The flow chart of selection of best basis based on Shannon entropy  

(Continued) 
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Figure 4.4.3.3: The flow chart of selection of best basis based on Shannon entropy 
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The experimental results of the selection of best basis based on Shannon entropy 

in terms of percentage of zeros, energy retained and peak signal to noise ratio for the 

natural and synthetic images are given in table 4.4.3.3 

Table 4.4.3.3 Results of selection of best basis based on Shannon entropy for the 

natural and synthetic images 

Name of 

The images 

Proposed Wavelet Packet Tree 

Percentage of zeros 
Percentage of 

Energy in retained 
PSNR in dB 

AISHWARYA 97.3539 99.9453 89.0559 

CHEETAH 93.4543 99.8795 77.5847 

LENA 96.7052 99.9403 86.9598 

WOMAN  86.0381 99.4586 65.1179 

BARBARA 91.6104 99.7769 74.6009 

MANDRILL 82.5804 99.6784 69.2524 

FINGURE 92.5357 98.8553 73.7627 

BIRD 96.8896 99.8824 83.0857 

ROSE 85.3911 99.3894 69.3632 

DONKEY 90.3995 99.7197 73.397 

BUTTERFLY 92.1114 99.9412 76.7155 

DIAGONAL 88.4518 99.5197 72.9791 

HORIZONTAL 90.1315 99.9689 91.2219 

VERTICAL 88.3709 99.9473 89.6969 

4.4.4.4 SELECTION OF BEST BASIS BASED ON ENERGY  

The wavelet packets are offering a more complex and flexible analysis. In 

wavelet packets analysis the details as well as the approximation are splitted. As there is 

large number of sub-bands obtained after the wavelet packets decomposition, the time 

complexity of the algorithm is high. To reduce the time complexity, the researcher 

suggests energy of a component, used as cost function to select the best basis for 

wavelet packet best tree [111]. The energy of the components is obtained by the 

equation  





N

i

XiEntropy
1

2           ---4.4.3.4 

Where Xi is the i
th

 coefficient of sub-band and N is the length of sub-band. 

Wavelet and wavelet packets has a compact support. The energy is concentrated 

in a few coefficients and most of the coefficients are zero. The less entropy means more 

information, and more energy means the more information concentration, resulting 

more compactness.  

The energy contain of decomposed components of wavelet packets may be 

greater than or less than the energy contain of component, which has been decomposed. 

The sum of cost (Energy) of decomposed components (child nodes) is checked with 

cost of component, which has been decomposed (parent node). If sum of the cost of 

child nodes is greater than the cost of parent node, then the child nodes are considered 
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as leaf nodes of the tree, otherwise child nodes are neglected from the tree, and parent 

node becomes leaf node of the tree. This process is iterated up to the last level of 

decomposition. Algorithm of best basis selection based on Energy contain is: 

1. Load the image 

2. Set current node equal to input image 

3. Decompose the current node using wavelet packet tree 

4. Evaluate the cost of current node, and decomposed components 

5. Compare the cost of parent node (current node) with the sum of cost of child 

nodes (decomposed components). If the sum of cost of child nodes is less than 

the parent node, consider the parent node as leaf node of the tree, and child 

nodes are pruned, else repeat the steps 3, 4, and 5 for each child node by 

considering a child node as a current node, until last level of the tree reached. 

This algorithm is efficient in terms of time complexity, because there is no need to 

decompose the full wavelet packets tree and no need to evaluate the costs initially. The 

decision of further decomposition, and cost calculation is based on the run time strategy 

of the algorithm, and it decides at run time whether to retain or prune the decomposed 

components. The flow chart of the above algorithm is given in figure 4.4.3.4. 
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Figure 4.4.3.4: The flow chart of selection of best basis based on Energy contain  

(Continued) 
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Figure 4.4.3.4: The flow chart of selection of best basis based on Energy contain  
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The experimental results of selection of best basis based on Energy contain in 

terms of percentage of zeros, energy retained and peak signal to noise ratio for the 

natural and synthetic images are given in table 4.4.3.4. 

Table 4.4.3.4 Results of selection of best basis based on Energy contain for the 

natural and synthetic images 

Name of 

The images 

Proposed Wavelet Packet Tree 

Percentage of zeros 
Percentage of 

Energy in retained 
PSNR in dB 

AISHWARYA 97.4437 99.9453 89.0559 

CHEETAH 93.4543 99.8795 77.5847 

LENA 96.7052 99.9403 86.9598 

WOMAN  86.0381 99.4586 65.1179 

BARBARA 91.6104 99.7769 74.6009 

MANDRILL 82.5804 99.6784 69.2524 

FINGURE 92.5357 98.8553 73.7627 

BIRD 96.8896 99.8824 83.0857 

ROSE 85.3911 99.3894 69.3632 

DONKEY 90.3995 99.7197 73.3974 

BUTTERFLY 92.2415 99.9407 76.6458 

DIAGONAL 87.906 99.4128 70.9919 

HORIZONTAL 90.1315 99.9689 91.2219 

VERTICAL 88.3709 99.9473 89.6969 

 

4.5.0 COMPARISON OF BEST BASIS SELECTION METHODS 

Few researchers discussed the selection of best basis based on Threshold 

entropy, Log entropy and Shannon entropy [76, 78, 79]. In an efficient image 

compression process, time complexity should be minimum, and the developed 

algorithm should not be human dependant such as, in an algorithm of selection of best 

basis based on Threshold entropy, the human interaction is required for selection of 

threshold value. As a threshold value changes the structure of a tree also changes, and 

there is no assurance of visual quality of an image, the important information may be 

lost in the process. Hence even though the selection of best basis based on Threshold 

entropy method is simple with less time complexity, it cannot be preferred because of 

its human dependency.  

In case of wavelet packets best tree based on Log entropy and wavelet packets 

best tree based on Shannon entropy, do not have human dependency, but their time 

complexity is more. Researcher suggests, the wavelet packets best tree based on energy 

contain. In proposed method there is no human dependency, and its time complexity is 

also less. The results of wavelet packet best tree based on threshold entropy for fixed 

value of threshold and thresholding using fixed value of threshold are given in table 

4.4.3.1. The results of wavelet packets best tree based on log entropy and thresholding 

using fixed value of threshold are given in table 4.4.3.2. The results of wavelet packets 

best tree based on Shannon entropy and thresholding using fixed value of threshold are 
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given in table 4.4.3.3. The results of wavelet packets best tree based on energy and 

thresholding using fixed value of threshold are given in table 4.4.3.4.  

It is observed that for most of natural images, percentage of zeros of proposed 

method is more than percentage of zeros of wavelet packets best tree based on threshold 

entropy and wavelet packets best tree based on log entropy by the amount of 0.0418 to 

1.4332 percent and the amount of 0.0898 to 3.6417 with the good visual quality. The 

percentage of zeros of proposed method is same as percentage of zeros of wavelet 

packets best tree based on Shannon entropy. By considering time complexity, human 

dependency, peak signal to noise ratio and percentage of zeros, researcher strongly 

recommends the wavelet packets best tree based on energy contain. 

4.6.0 ADAPTIVE THRESHOLD 

Once the best basis has been selected based on cost function, the image is 

represented by a set of wavelet packets coefficients. The high compression ratio is 

achieved by using the thresholding to the wavelet packets coefficients. Embedded zero 

tree wavelet is one of the techniques proposed by the researchers [65, 66, 67, 68, 69]. 

This technique begins with coefficients in the coarsest scale, and then the tree is built by 

noting that a coefficient will have descendants at finer scales with the same spatial 

location. The coefficient value is compared with defined threshold, if the value of the 

coefficient is less than the threshold, then that coefficients are said to be insignificant. If 

any one coefficient is insignificant then their descendants will also be insignificant for 

natural image. This technique is not suitable for proposed algorithm because threshold 

is not constant and tree is also not regular.  

Since wavelets are ill suited to represent oscillatory patterns: rapid variations of 

intensity can only be described by small scale wavelet coefficients, which are often 

quantized to zero, even at high bit rate. Hence the proposed algorithm uses wavelet 

packets decomposition for image compression. The advantages of wavelet packets can 

be gained by proper selection of thresholds. In image compression the selection of 

threshold plays the crucial role. In the proposed algorithm threshold is adaptive, and the 

adaptive threshold is calculated on the basis of nature of image.  

The statistical properties of the sub-images of different orientations are usually 

different, and thus different thresholds should be adaptive to each sub-image. In 

compression algorithm, the threshold is key factor affecting the overall performance. 

The threshold is calculated for each resolution and orientation, taking into account the 

different statistical properties of each sub-image. In order to prevent the major 
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structures from being smoothened, in thresholding, the coefficient value less than 

threshold is converted to zero, and others are kept unchanged. For high value of 

threshold, most of the coefficients are zero, and it results in high compression, but 

visual quality of image is poor, and the peak signal to noise ratio is very low. For low 

value of threshold the visual quality of signal is good, peak signal to noise ratio is high, 

but compression ratio is low. The basic aim of the research is to improve the 

compression ratio with maintaining the quality of image, by exploiting the advantages 

of wavelet packets tree. For fixed global threshold the result is good for one image but 

for same value of threshold the result for other images may be poor. Therefore selection 

of threshold is one of main areas of researcher in image compression.  

To obtain good visual quality results, human perception is main factor to select 

the threshold. Human eye is less sensitive to high frequency signal and more sensitive to 

low frequency signal. Hence most of the researchers suggest the low value of threshold 

for high frequency spectrum and high value of threshold for low frequency spectrum. 

But these thresholds can work well, if image has maximum low frequency components, 

and less value of high frequency components. The result for the image, which includes 

more high frequency spectrum distributed all over the image, is poor. The goal to select, 

variable threshold is to achieve the good visual picture quality at low bit rate. In order to 

benefit from variable threshold, proper model for determining the threshold, based on 

perceptual value of the human eye must be employed. 

Thus the technique of evaluating adaptive threshold is suggested, which is based on:  

 What type of mother wavelet is used to decompose the image? 

 How much energy is concentrated in sub-bands?  

 What is relative visibility after discarding various coefficients of equal energy at 

different levels of tree? 

Algorithm to find the adaptive threshold is given below: 

1. The RGB color components of the color image are converted in to 

YCrCb color components, 

2. Decompose color components Y, Cr, and Cb of the image using wavelet 

packets tree, 

3. Find the percentage of energy of each child node for each color 

component  

100
nodeparentofEnergy

nodechildofEnergy
EnergyPercentage           ---4.6.1 

4. Find the median of each child node for each color component 
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5. Calculate the threshold of each node for each color component  

)()( medianPenergyofPercentageKThreshold       ---4.6.2 

where the K and P are constants. To reduce the dependency of algorithm, the 

researcher has tested this algorithm over many natural and synthetic images. By 

considering the compression ratio and visual quality researcher fixes the value of K as 

3. The value of P is not fixed, that provides the flexibility to the user in terms of visual 

quality, and compression ratio. As human eye is more sensitive to lower frequency 

components and less sensitive to high frequency components, the value of P for higher-

level decomposition is more and lower for low-level decomposition. The researcher 

uses the three level wavelet packets decomposition. The value of P for first level is 

variable, which is provided by the user according to applications demand. The value of 

P for second level is P1, which is P + h11. The value of P for third level is P2, which is 

equal to P+h22, where h11 is a square root of median of horizontal, vertical, and diagonal 

components at level one of decomposition, and where h22 is a square root of median of 

horizontal, vertical, and diagonal components at level two of decomposition. 

The human visual system is more sensitive to low frequency components, and 

less sensitive to high frequency components. Therefore, for high frequency sub-bands 

the threshold value should be more to neglect the high frequency components. But 

researcher observes that if the energy contain of high frequency component is low in a 

sub-bands, then the above observation holds true. But if the energy of high frequency 

component in a sub-band is more, then we cannot neglect the high frequency 

components. And hence in threshold calculation researcher has considered the energy 

contain of a sub-band and the median of the sub-band. 

The value of the threshold suggested and implemented in Matlab 6.5 in the 

function “ddencmp” is constant. It is calculated by using Daubechies mother wavelet 

db1. In proposed algorithm the value of the threshold evaluated is also the function of 

the type of mother wavelet used to decompose the image. In short the recommended 

threshold is adaptive, which is based on nature of the image, and type of wavelet used 

[109]. In addition to this the researcher has provided the flexibility to select the value of 

P. For the low value of the P, the compression ratio is low, and visual quality of the 

image is good. For high value of P, the compression ratio is high, and quality of the 

image is degraded. This flexibility can be used according to the application demand. If 

the application demands the high compression ratio, and ready to accept the 

compromised quality of the image, then user can specify high value of P. But if 

application demands good quality of the image with less compression ratio, then user 
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can specify the low value of P. It is important to note that the minimum value of P 

should always be greater than the median of a sub-band. The values of the thresholds for 

the different values of P, for the natural and synthetic images for the color components 

Y, Cr, and Cb are given in a table 4.6.1 to 4.6.12. 

Table 4.6.1 Thresholds for Y color component of the natural and synthetic images 

for P = 10 for the sub-bands 1 to 47 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 27.9003 27.8009 18.3429 21.9720 6.5471 14.2113 17.4258 26.2610 

TH3 27.5322 27.9667 19.5571 8.8517 13.6433 10.5887 27.9123 17.2727 

TH4 29.3379 29.5174 26.9560 25.0954 24.4254 24.4721 29.7362 29.5964 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 30.9454 29.3670 22.6024 39.0089 20.6965 29.6282 17.4258 26.2610 

TH7 29.1732 29.2462 24.7538 20.5257 35.9747 23.4393 27.9123 17.2727 

TH8 35.4858 34.3688 39.2468 46.2310 58.2815 49.1330 29.7362 29.5964 

TH9 55.4805 54.1816 20.2530 14.6152 85.2171 45.1983 70.0000 70.0000 

TH10 30.9454 29.3670 22.6024 39.0089 20.6965 29.6282 17.4258 26.2610 

TH11 29.1732 29.2462 24.7538 20.5257 35.9747 23.4393 27.9123 17.2727 

TH12 35.4858 34.3688 39.2468 46.2310 58.2815 49.1330 29.7362 29.5964 

TH13 55.4805 54.1816 20.2530 14.6152 85.2171 45.1983 70.0000 70.0000 

TH14 30.9454 29.3670 22.6024 39.0089 20.6965 29.6282 17.4258 26.2610 

TH15 29.1732 29.2462 24.7538 20.5257 35.9747 23.4393 27.9123 17.2727 

TH16 35.4858 34.3688 39.2468 46.2310 58.2815 49.1330 29.7362 29.5964 

TH17 55.4805 54.1816 20.2530 14.6152 85.2171 45.1983 70.0000 70.0000 

TH18 30.9454 29.3670 22.6024 39.0089 20.6965 29.6282 17.4258 26.2610 

TH19 29.1732 29.2462 24.7538 20.5257 35.9747 23.4393 27.9123 17.2727 

TH20 30.9454 29.3670 22.6024 39.0089 20.6965 29.6282 17.4258 26.2610 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH23 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH24 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH25 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH26 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH27 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH28 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH29 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH30 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH31 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH32 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH33 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH34 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH35 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH36 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH37 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH38 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH39 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH40 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH41 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH42 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH43 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH44 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH45 0 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH46 0 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH47 0 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

(Continued) 
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Table 4.6.1 Thresholds for Y color component of the natural and synthetic images 

for P = 10 for the sub-bands 48 to 84  

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH48 0 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH49 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH50 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH51 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH52 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH53 84.3401 83.0020 108.1537 114.9941 193.4811 161.7985 70.0000 70.0000 

TH54 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH55 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH56 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH57 0 0.7318 0.5458 0.6733 1.8819 1.6382 2.5489 1.6228 

TH58 0 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH59 0 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH60 0 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH61 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH62 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH63 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH64 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH65 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH66 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH67 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH68 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH69 0 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH70 0 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH71 0 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH72 0 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH73 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH74 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH75 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH76 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH77 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH78 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH79 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH80 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

TH81 39.9764 31.5686 23.5457 29.0450 81.1779 70.6663 109.9503 70.0000 

TH82 37.3120 34.9349 22.6024 40.0337 20.6965 33.3816 17.4258 90.4644 

TH83 29.1732 29.2462 32.6495 20.5257 31.9108 23.4393 99.6670 17.2727 

TH84 49.0264 46.6241 60.7051 56.9601 73.1176 66.1946 106.1795 101.9539 

 

Table 4.6.2 Thresholds for Y color component of the natural and synthetic images 

for P = 20 for the sub-bands 1 to 10 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 57.2690 57.0650 40.9453 49.4371 27.2436 38.6175 34.8515 52.5221 

TH3 56.7054 57.2129 42.9961 29.3773 38.6023 34.0280 55.8246 34.5455 

TH4 59.1870 59.4084 54.9623 53.3719 52.0950 52.7551 59.4723 59.1927 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 60.3142 58.6311 45.2047 66.4740 41.3929 54.0344 34.8515 52.5221 

TH7 58.3464 58.4924 48.1929 41.0513 60.9338 46.8786 55.8246 34.5455 

TH8 65.3349 64.2598 67.2531 74.5075 85.9512 77.4160 59.4723 59.1927 

TH9 125.4805 124.1816 90.2530 84.6152 15.2171 24.8017 140.0000 140.0000 

TH10 60.3142 58.6311 45.2047 66.4740 41.3929 54.0344 34.8515 52.5221 
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Table 4.6.2 Thresholds for Y color component of the natural and synthetic images 

for P = 20 for the sub-bands 11 to 64 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH11 58.3464 58.4924 48.1929 41.0513 60.9338 46.8786 55.8246 34.5455 

TH12 65.3349 64.2598 67.2531 74.5075 85.9512 77.4160 59.4723 59.1927 

TH13 125.4805 124.1816 90.2530 84.6152 15.2171 24.8017 140.0000 140.0000 

TH14 60.3142 58.6311 45.2047 66.4740 41.3929 54.0344 34.8515 52.5221 

TH15 58.3464 58.4924 48.1929 41.0513 60.9338 46.8786 55.8246 34.5455 

TH16 65.3349 64.2598 67.2531 74.5075 85.9512 77.4160 59.4723 59.1927 

TH17 125.4805 124.1816 90.2530 84.6152 15.2171 24.8017 140.0000 140.0000 

TH18 60.3142 58.6311 45.2047 66.4740 41.3929 54.0344 34.8515 52.5221 

TH19 58.3464 58.4924 48.1929 41.0513 60.9338 46.8786 55.8246 34.5455 

TH20 60.3142 58.6311 45.2047 66.4740 41.3929 54.0344 34.8515 52.5221 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH23 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH24 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH25 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH26 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH27 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH28 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH29 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH30 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH31 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH32 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH33 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH34 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH35 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH36 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH37 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH38 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH39 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH40 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH41 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH42 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH43 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH44 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH45 0 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH46 0 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH47 0 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH48 0 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH49 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH50 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH51 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH52 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH53 154.3401 153.0020 178.1537 184.9941 263.4811 231.7985 140.0000 140.0000 

TH54 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH55 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH56 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH57 0 2.3546 1.0769 2.2961 0.2591 0.0154 0.9261 3.2456 

TH58 0 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH59 0 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH60 0 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH61 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH62 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH63 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH64 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 
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Table 4.6.2 Thresholds for Y color component of the natural and synthetic images 

for P = 20 for the sub-bands 65 to 84 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH65 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH66 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH67 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH68 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH69 0 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH70 0 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH71 0 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH72 0 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH73 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH74 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH75 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH76 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH77 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH78 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH79 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH80 78.8754 76.5151 88.7114 85.2367 100.7873 94.4776 135.9156 131.5503 

TH81 109.9764 101.5686 46.4543 99.0450 11.1779 0.6663 39.9503 140.0000 

TH82 66.6808 64.1990 45.2047 67.4987 41.3929 57.7878 34.8515 116.7254 

TH83 58.3464 58.4924 56.0885 41.0513 56.8698 46.8786 127.5792 34.5455 

TH84 78.8754 76.5151 88.711 85.2367 100.7873 94.4776 135.9156 131.5503 

 

Table 4.6.3 Thresholds for Y color component of the natural and synthetic images 

for P = 30 for the sub-bands 1 to 28 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 86.6378 86.3291 63.5476 76.9021 47.9400 63.0236 52.2773 78.7831 

TH3 85.8786 86.4591 66.4352 49.9030 63.5614 57.4674 83.7369 51.8182 

TH4 89.0360 89.2994 82.9685 81.6484 79.7647 81.0381 89.2085 88.7891 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 89.6829 87.8952 67.8071 93.9390 62.0894 78.4405 52.2773 78.7831 

TH7 87.5196 87.7387 71.6319 61.5770 85.8928 70.3180 83.7369 51.8182 

TH8 95.1840 94.1508 95.2593 102.7840 113.6208 105.6991 89.2085 88.7891 

TH9 195.4805 194.1816 160.2530 154.6152 54.7829 94.8017 210.0000 210.0000 

TH10 89.6829 87.8952 67.8071 93.9390 62.0894 78.4405 52.2773 78.7831 

TH11 87.5196 87.7387 71.6319 61.5770 85.8928 70.3180 83.7369 51.8182 

TH12 95.1840 94.1508 95.2593 102.7840 113.6208 105.6991 89.2085 88.7891 

TH13 195.4805 194.1816 160.2530 154.6152 54.7829 94.8017 210.0000 210.0000 

TH14 89.6829 87.8952 67.8071 93.9390 62.0894 78.4405 52.2773 78.7831 

TH15 87.5196 87.7387 71.6319 61.5770 85.8928 70.3180 83.7369 51.8182 

TH16 95.1840 94.1508 95.2593 102.7840 113.6208 105.6991 89.2085 88.7891 

TH17 195.4805 194.1816 160.2530 154.6152 54.7829 94.8017 210.0000 210.0000 

TH18 89.6829 87.8952 67.8071 93.9390 62.0894 78.4405 52.2773 78.7831 

TH19 87.5196 87.7387 71.6319 61.5770 85.8928 70.3180 83.7369 51.8182 

TH20 89.6829 87.8952 67.8071 93.9390 62.0894 78.4405 52.2773 78.7831 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH23 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH24 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH25 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH26 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH27 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH28 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 
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Table 4.6.3 Thresholds for Y color component of the natural and synthetic images 

for P = 30 for the sub-bands 29 to 84 
 

TH29 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH30 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH31 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH32 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH33 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH34 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH35 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH36 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH37 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH38 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH39 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH40 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH41 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH42 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH43 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH44 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH45 0 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH46 0 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH47 0 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH48 0 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH49 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH50 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH51 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH52 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH53 224.3401 223.0020 248.1537 254.9941 333.4811 301.7985 210.0000 210.0000 

TH54 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH55 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH56 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH57 0 3.9774 2.6997 3.9189 1.3636 1.6073 0.6966 4.8683 

TH58 0 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH59 0 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH60 0 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH61 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH62 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH63 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH64 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH65 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH66 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH67 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH68 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH69 0 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH70 0 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH71 0 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH72 0 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH73 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH74 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH75 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH76 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH77 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH78 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH79 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH80 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 

TH81 179.9764 171.5686 116.4543 169.0450 58.8221 69.3337 30.0497 210.0000 

TH82 96.0495 93.4631 67.8071 94.9637 62.0894 82.1939 52.2773 142.9865 

TH83 87.5196 87.7387 79.5276 61.5770 81.8288 70.3180 155.4915 51.8182 

TH84 108.7245 106.4062 116.7176 113.5132 128.4569 122.7606 165.6518 161.1466 
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Table 4.6.4 Thresholds for Y color component of the natural and synthetic images 

for P = 40 for the sub-bands 1 to 54 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 116.0065 115.5932 86.1500 104.3671 68.6365 87.4297 69.7031 105.0442 

TH3 115.0518 115.7054 89.8742 70.4286 88.5204 80.9067 111.6492 69.0910 

TH4 118.8851 119.1904 110.9747 109.9249 107.4343 109.3212 118.9446 118.3854 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 119.0516 117.1593 90.4094 121.4040 82.7858 102.8467 69.7031 105.0442 

TH7 116.6928 116.9849 95.0710 82.1026 110.8518 93.7573 111.6492 69.0910 

TH8 125.0330 124.0418 123.2656 131.0605 141.2905 133.9821 118.9446 118.3854 

TH9 265.4805 264.1816 230.2530 224.6152 124.7829 164.8017 280.0000 280.0000 

TH10 119.0516 117.1593 90.4094 121.4040 82.7858 102.8467 69.7031 105.0442 

TH11 116.6928 116.9849 95.0710 82.1026 110.8518 93.7573 111.6492 69.0910 

TH12 125.0330 124.0418 123.2656 131.0605 141.2905 133.9821 118.9446 118.3854 

TH13 265.4805 264.1816 230.2530 224.6152 124.7829 164.8017 280.0000 280.0000 

TH14 119.0516 117.1593 90.4094 121.4040 82.7858 102.8467 69.7031 105.0442 

TH15 116.6928 116.9849 95.0710 82.1026 110.8518 93.7573 111.6492 69.0910 

TH16 125.0330 124.0418 123.2656 131.0605 141.2905 133.9821 118.9446 118.3854 

TH17 265.4805 264.1816 230.2530 224.6152 124.7829 164.8017 280.0000 280.0000 

TH18 119.0516 117.1593 90.4094 121.4040 82.7858 102.8467 69.7031 105.0442 

TH19 116.6928 116.9849 95.0710 82.1026 110.8518 93.7573 111.6492 69.0910 

TH20 119.0516 117.1593 90.4094 121.4040 82.7858 102.8467 69.7031 105.0442 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH23 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH24 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH25 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH26 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH27 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH28 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH29 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH30 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH31 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH32 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH33 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH34 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH35 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH36 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH37 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH38 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH39 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH40 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH41 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH42 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH43 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH44 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH45 0 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH46 0 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH47 0 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH48 0 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH49 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH50 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH51 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH52 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH53 294.3401 293.0020 318.1537 324.9941 403.4811 371.7985 280.0000 280.0000 

TH54 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 
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Table 4.6.4 Thresholds for Y color component of the natural and synthetic images 

for P = 40 for the sub-bands 55 to 84  

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH55 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH56 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH57 0 5.6002 4.3225 5.5417 2.9864 3.2301 2.3194 6.4911 

TH58 0 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH59 0 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH60 0 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH61 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH62 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH63 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH64 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH65 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH66 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH67 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH68 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH69 0 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH70 0 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH71 0 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH72 0 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH73 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH74 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH75 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH76 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH77 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH78 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH79 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH80 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

TH81 249.9764 241.5686 186.4543 239.0450 128.8221 139.3337 100.0497 280.0000 

TH82 125.4182 122.7272 90.4094 122.4288 82.7858 106.6001 69.7031 169.2475 

TH83 116.6928 116.9849 102.9666 82.1026 106.7879 93.7573 183.4038 69.0910 

TH84 138.5736 136.2972 144.7239 141.7897 156.1266 151.0437 195.3880 190.7430 

 

Table 4.6.5 Thresholds for Cr color component of the natural and synthetic images 

for P = 10 for the sub-bands 1 to 18 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 .0000 1.0000 1.0000 1.0000 

TH2 28.7728 17.9941 27.3857 35.3166 27.7784 27.0572 20.6647 26.6379 

TH3 28.2570 20.9119 27.1055 36.2807 27.1202 26.7730 27.9127 20.2253 

TH4 29.4556 0.8195 28.7830 17.1020 29.1844 28.9150 29.8042 29.6900 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 29.6852 17.9941 27.9065 35.3166 28.8513 29.0985 20.6647 26.6379 

TH7 28.9163 20.9119 27.8885 36.2807 29.6296 28.1802 27.9127 20.2253 

TH8 30.8428 0.8195 30.1697 17.1020 32.8296 33.6947 29.8042 29.6900 

TH9 66.8853 70.0000 65.8044 70.0000 59.9302 57.1131 70.0000 70.0000 

TH10 29.6852 17.9941 27.9065 35.3166 28.8513 29.0985 20.6647 26.6379 

TH11 28.9163 20.9119 27.8885 36.2807 29.6296 28.1802 27.9127 20.2253 

TH12 30.8428 0.8195 30.1697 17.1020 32.8296 33.6947 29.8042 29.6900 

TH13 66.8853 70.0000 65.8044 70.0000 59.9302 57.1131 70.0000 70.0000 

TH14 29.6852 17.9941 27.9065 35.3166 28.8513 29.0985 20.6647 26.6379 

TH15 28.9163 20.9119 27.8885 36.2807 29.6296 28.1802 27.9127 20.2253 

TH16 30.8428 0.8195 30.1697 17.1020 32.8296 33.6947 29.8042 29.6900 

TH17 66.8853 70.0000 65.8044 70.0000 59.9302 57.1131 70.0000 70.0000 

TH18 29.6852 17.9941 27.9065 35.3166 28.8513 29.0985 20.6647 26.6379 
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Table 4.6.5 Thresholds for Cr color component of the natural and synthetic images 

for P = 10 for the sub-bands 18 to 71 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH19 28.9163 20.9119 27.8885 36.2807 29.6296 28.1802 27.9127 20.2253 

TH20 29.6852 17.9941 27.9065 35.3166 28.8513 29.0985 20.6647 26.6379 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 31.4897 17.9941 20.5031 28.1772 23.7518 22.9917 5.6817 141.7985 

TH23 28.9163 20.9119 21.8345 28.6772 19.3185 19.3683 133.8540 4.0801 

TH24 35.2033 0.8195 32.0360 21.7286 41.5132 40.9457 154.9642 164.1832 

TH25 61.8169 70.0000 0 18.3692 1.7650 1.9926 19.3735 4.6652 

TH26 31.4897 17.9941 0 1.5931 30.3029 33.8188 27.7327 166.9569 

TH27 28.9163 20.9119 0 2.0594 29.5955 29.5360 159.0141 27.5236 

TH28 35.2033 0.8195 0 7.2172 45.6174 48.4220 161.4910 171.3859 

TH29 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH30 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH31 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH32 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH33 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH34 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH35 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH36 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH37 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 0 4.6652 

TH38 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 0 166.9569 

TH39 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 0 27.5236 

TH40 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 0 171.3859 

TH41 1.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH42 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH43 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH44 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH45 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH46 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH47 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH48 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH49 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH50 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH51 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH52 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH53 72.8405 70.0000 4.2250 18.3692 4.6031 5.2367 5.7122 4.6652 

TH54 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH55 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH56 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH57 1.4331 1.6228 17.1058 14.7043 9.1920 9.7080 75.6984 21.9884 

TH58 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH59 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH60 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH61 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH62 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH63 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH64 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH65 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH66 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH67 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH68 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH69 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH70 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH71 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 
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Table 4.6.5 Thresholds for Cr color component of the natural and synthetic images 

for P = 10 for the sub-bands 72 to 84  

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH72 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH73 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH74 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH75 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH76 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH77 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH78 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH79 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH80 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

TH81 61.8169 70.0000 3.1837 18.3692 1.7650 1.9926 19.3735 4.6652 

TH82 31.4897 17.9941 29.4569 1.5931 30.3029 33.8188 27.7327 166.9569 

TH83 28.9163 20.9119 31.0808 2.0594 29.5955 29.5360 159.0141 27.5236 

TH84 35.2033 0.8195 35.6794 7.2172 45.6174 48.4220 161.4910 171.3859 

 

Table 4.6.6 Thresholds for Cr color component of the natural and synthetic images 

for P = 20 for the sub-bands 1 to 35 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 57.9079 35.9881 55.2921 70.6333 56.6297 55.3394 41.3293 53.2758 

TH3 57.1733 41.8238 54.7200 72.5614 55.5528 54.9532 55.8254 40.4506 

TH4 59.0439 1.6390 57.7311 34.2039 58.8035 58.3459 59.6084 59.3799 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 58.8202 35.9881 55.8129 70.6333 57.7026 57.3807 41.3293 53.2758 

TH7 57.8326 41.8238 55.5030 72.5614 58.0623 56.3604 55.8254 40.4506 

TH8 60.4312 1.6390 59.1178 34.2039 62.4487 63.1255 59.6084 59.3799 

TH9 136.8853 140.0000 135.8044 140.0000 129.9302 127.1131 140.0000 140.0000 

TH10 58.8202 35.9881 55.8129 70.6333 57.7026 57.3807 41.3293 53.2758 

TH11 57.8326 41.8238 55.5030 72.5614 58.0623 56.3604 55.8254 40.4506 

TH12 60.4312 1.6390 59.1178 34.2039 62.4487 63.1255 59.6084 59.3799 

TH13 136.8853 140.0000 135.8044 140.0000 129.9302 127.1131 140.0000 140.0000 

TH14 58.8202 35.9881 55.8129 70.6333 57.7026 57.3807 41.3293 53.2758 

TH15 57.8326 41.8238 55.5030 72.5614 58.0623 56.3604 55.8254 40.4506 

TH16 60.4312 1.6390 59.1178 34.2039 62.4487 63.1255 59.6084 59.3799 

TH17 136.8853 140.0000 135.8044 140.0000 129.9302 127.1131 140.0000 140.0000 

TH18 58.8202 35.9881 55.8129 70.6333 57.7026 57.3807 41.3293 53.2758 

TH19 57.8326 41.8238 55.5030 72.5614 58.0623 56.3604 55.8254 40.4506 

TH20 58.8202 35.9881 55.8129 70.6333 57.7026 57.3807 41.3293 53.2758 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 56.7127 55.7188 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH23 52.1075 60.7881 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH24 63.4857 32.9180 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH25 8.6147 19.5622 0 140.0000 99.4625 100.9778 167.4105 140.0000 

TH26 61.9669 21.8149 0 70.6333 58.2848 60.6369 41.3293 179.2160 

TH27 59.4489 19.4934 0 72.5614 56.8654 56.3604 178.4063 40.4506 

TH28 65.4639 35.4793 0 34.2039 74.8054 77.1651 190.4960 199.7500 

TH29 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH30 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH31 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH32 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH33 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH34 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH35 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 
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Table 4.6.6 Thresholds for Cr color component of the natural and synthetic images 

for P = 20 for the sub-bands 36 to 84  

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH36 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH37 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 0 140.0000 

TH38 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 0 179.2160 

TH39 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 0 40.4506 

TH40 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 0 199.7500 

TH41 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH42 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH43 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH44 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH45 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH46 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH47 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH48 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH49 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH50 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH51 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH52 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH53 9.3351 19.5622 142.9052 140.0000 146.8384 151.4116 140.0000 140.0000 

TH54 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH55 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH56 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH57 41.3525 34.8402 2.8964 3.2456 2.3058 2.3409 3.8810 3.2456 

TH58 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH59 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH60 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH61 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH62 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH63 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH64 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH65 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH66 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH67 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH68 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH69 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH70 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH71 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH72 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH73 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH74 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH75 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH76 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH77 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH78 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH79 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH80 65.4639 35.4793 63.6924 34.2039 74.8054 77.1651 190.4960 199.7500 

TH81 8.6147 19.5622 124.9370 140.0000 99.4625 100.9778 167.4105 140.0000 

TH82 61.9669 21.8149 55.8129 70.6333 58.2848 60.6369 41.3293 179.2160 

TH83 59.4489 19.4934 56.8265 72.5614 56.8654 56.3604 178.4063 40.4506 

TH84 65.4639 35.4793 63.6924 34.2039 74.805 77.1651 190.4960 199.7500 
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Table 4.6.7 Thresholds for Cr color component of the natural and synthetic images 

for P = 30 for the sub-bands 1 to 54  

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 87.0429 53.9822 83.1986 105.9499 85.4810 83.6216 61.9940 79.9137 

TH3 86.0897 62.7357 82.3345 108.8421 83.9855 83.1334 83.7382 60.6759 

TH4 88.6323 2.4585 86.6791 51.3059 88.4226 87.7767 89.4126 89.0699 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 87.9553 53.9822 83.7194 105.9499 86.5539 85.6629 61.9940 79.9137 

TH7 86.7490 62.7357 83.1176 108.8421 86.4949 84.5406 83.7382 60.6759 

TH8 90.0195 2.4585 88.0658 51.3059 92.0678 92.5563 89.4126 89.0699 

TH9 206.8853 210.0000 205.8044 210.0000 199.9302 197.1131 210.0000 210.0000 

TH10 87.9553 53.9822 83.7194 105.9499 86.5539 85.6629 61.9940 79.9137 

TH11 86.7490 62.7357 83.1176 108.8421 86.4949 84.5406 83.7382 60.6759 

TH12 90.0195 2.4585 88.0658 51.3059 92.0678 92.5563 89.4126 89.0699 

TH13 206.8853 210.0000 205.8044 210.0000 199.9302 197.1131 210.0000 210.0000 

TH14 87.9553 53.9822 83.7194 105.9499 86.5539 85.6629 61.9940 79.9137 

TH15 86.7490 62.7357 83.1176 108.8421 86.4949 84.5406 83.7382 60.6759 

TH16 90.0195 2.4585 88.0658 51.3059 92.0678 92.5563 89.4126 89.0699 

TH17 206.8853 210.0000 205.8044 210.0000 199.9302 197.1131 210.0000 210.0000 

TH18 87.9553 53.9822 83.7194 105.9499 86.5539 85.6629 61.9940 79.9137 

TH19 86.7490 62.7357 83.1176 108.8421 86.4949 84.5406 83.7382 60.6759 

TH20 87.9553 53.9822 83.7194 105.9499 86.5539 85.6629 61.9940 79.9137 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH23 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH24 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH25 201.8169 210.0000 0 210.0000 169.4625 170.9778 97.4105 210.0000 

TH26 89.7597 53.9822 0 105.9499 87.1361 88.9191 61.9940 205.8538 

TH27 86.7490 62.7357 0 108.8421 85.2980 84.5406 206.3191 60.6759 

TH28 94.3800 2.4585 0 51.3059 104.4245 106.5959 220.3002 229.4399 

TH29 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH30 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH31 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH32 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH33 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH34 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH35 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH36 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH37 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 0 210.0000 

TH38 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 0 205.8538 

TH39 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 0 60.6759 

TH40 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 0 229.4399 

TH41 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH42 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH43 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH44 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH45 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH46 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH47 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH48 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH49 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH50 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH51 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH52 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH53 212.8405 210.0000 212.9052 210.0000 216.8384 221.4116 210.0000 210.0000 

TH54 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

(Continued) 
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Table 4.6.7 Thresholds for Cr color component of the natural and synthetic images 

for P = 30 for the sub-bands 55 to 84  
 

TH55 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH56 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH57 4.6786 4.8683 4.5191 4.8683 3.9286 3.9637 2.2582 4.8683 

TH58 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH59 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH60 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH61 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH62 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH63 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH64 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH65 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH66 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH67 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH68 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH69 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH70 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH71 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH72 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH73 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH74 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH75 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH76 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH77 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH78 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH79 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH80 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

TH81 201.8169 210.0000 194.9370 210.0000 169.4625 170.9778 97.4105 210.0000 

TH82 89.7597 53.9822 83.7194 105.9499 87.1361 88.9191 61.9940 205.8538 

TH83 86.7490 62.7357 84.4411 108.8421 85.2980 84.5406 206.3191 60.6759 

TH84 94.3800 2.4585 92.6404 51.3059 104.4245 106.5959 220.3002 229.4399 

 

Table 4.6.8 Thresholds for Cr color component of the natural and synthetic images 

for P = 40 for the sub-bands 1 to 65 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 116.1779 71.9762 111.1050 141.2666 114.3323 111.9038 82.6587 106.5515 

TH3 115.0060 83.6476 109.9490 145.1227 112.4182 111.3136 111.6509 80.9012 

TH4 118.2207 3.2781 115.6272 68.4078 118.0417 117.2075 119.2169 118.7599 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 117.0903 71.9762 111.6259 141.2666 115.4052 113.9450 82.6587 106.5515 

TH7 115.6653 83.6476 110.7321 145.1227 114.9276 112.7208 111.6509 80.9012 

TH8 119.6079 3.2781 117.0138 68.4078 121.6869 121.9871 119.2169 118.7599 

TH9 276.8853 280.0000 275.8044 280.0000 269.9302 267.1131 280.0000 280.0000 

TH10 117.0903 71.9762 111.6259 141.2666 115.4052 113.9450 82.6587 106.5515 

TH11 115.6653 83.6476 110.7321 145.1227 114.9276 112.7208 111.6509 80.9012 

TH12 119.6079 3.2781 117.0138 68.4078 121.6869 121.9871 119.2169 118.7599 

TH13 276.8853 280.0000 275.8044 280.0000 269.9302 267.1131 280.0000 280.0000 

TH14 117.0903 71.9762 111.6259 141.2666 115.4052 113.9450 82.6587 106.5515 

TH15 115.6653 83.6476 110.7321 145.1227 114.9276 112.7208 111.6509 80.9012 

TH16 119.6079 3.2781 117.0138 68.4078 121.6869 121.9871 119.2169 118.7599 

TH17 276.8853 280.0000 275.8044 280.0000 269.9302 267.1131 280.0000 280.0000 

TH18 117.0903 71.9762 111.6259 141.2666 115.4052 113.9450 82.6587 106.5515 

TH19 115.6653 83.6476 110.7321 145.1227 114.9276 112.7208 111.6509 80.9012 

TH20 117.0903 71.9762 111.6259 141.2666 115.4052 113.9450 82.6587 106.5515 
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Table 4.6.8 Thresholds for Cr color component of the natural and synthetic images 

for P = 40 for the sub-bands 21 to 74 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH23 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH24 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH25 271.8169 280.0000 0 280.0000 239.4625 240.9778 27.4105 280.0000 

TH26 118.8948 71.9762 0 141.2666 115.9874 117.2013 82.6587 232.4917 

TH27 115.6653 83.6476 0 145.1227 113.7307 112.7208 234.2318 80.9012 

TH28 123.9684 3.2781 0 68.4078 134.0436 136.0267 250.1044 259.1299 

TH29 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH30 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH31 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH32 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH33 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH34 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH35 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH36 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH37 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 0 280.0000 

TH38 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 0 232.4917 

TH39 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 0 80.9012 

TH40 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 0 259.1299 

TH41 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH42 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH43 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH44 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH45 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH46 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH47 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH48 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH49 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH50 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH51 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH52 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH53 282.8405 280.0000 282.9052 280.0000 286.8384 291.4116 280.0000 280.0000 

TH54 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH55 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH56 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH57 6.3014 6.4911 6.1419 6.4911 5.5513 5.5865 0.6354 6.4911 

TH58 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH59 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH60 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH61 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH62 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH63 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH64 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH65 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH66 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH67 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH68 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH69 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH70 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH71 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH72 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH73 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH74 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 
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Table 4.6.8 Thresholds for Cr color component of the natural and synthetic images 

for P = 40 for the sub-bands 75 to 84 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH75 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH76 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH77 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH78 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH79 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH80 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

TH81 271.8169 280.0000 264.9370 280.0000 239.4625 240.9778 27.4105 280.0000 

TH82 118.8948 71.9762 111.6259 141.2666 115.9874 117.2013 82.6587 232.4917 

TH83 115.6653 83.6476 112.0556 145.1227 113.7307 112.7208 234.2318 80.9012 

TH84 123.9684 3.2781 121.5885 68.4078 134.0436 136.0267 250.1044 259.1299 

 

Table 4.6.9 Thresholds for Cb color component of the natural and synthetic images 

for P = 10 for the sub-bands 1 to 38 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 28.5220 4.2083 26.9627 17.8535 26.7954 26.1802 20.1975 22.6220 

TH3 28.0283 7.3249 26.4082 19.7826 26.4729 25.7583 27.8923 19.4462 

TH4 29.4023 7.9431 28.7292 4.5592 28.7381 28.4637 29.7546 29.6515 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 29.4549 4.2083 27.3567 17.8535 28.3081 28.2981 20.1975 22.6220 

TH7 28.6106 7.3249 26.9728 19.7826 30.5617 27.0738 27.8923 19.4462 

TH8 30.8743 7.9431 29.7914 4.5592 34.9041 33.1093 29.7546 29.6515 

TH9 66.5597 70.0000 66.6288 70.0000 53.2270 58.0819 70.0000 70.0000 

TH10 29.4549 4.2083 27.3567 17.8535 28.3081 28.2981 20.1975 22.6220 

TH11 28.6106 7.3249 26.9728 19.7826 30.5617 27.0738 27.8923 19.4462 

TH12 30.8743 7.9431 29.7914 4.5592 34.9041 33.1093 29.7546 29.6515 

TH13 66.5597 70.0000 66.6288 70.0000 53.2270 58.0819 70.0000 70.0000 

TH14 29.4549 4.2083 27.3567 17.8535 28.3081 28.2981 20.1975 22.6220 

TH15 28.6106 7.3249 26.9728 19.7826 30.5617 27.0738 27.8923 19.4462 

TH16 30.8743 7.9431 29.7914 4.5592 34.9041 33.1093 29.7546 29.6515 

TH17 66.5597 70.0000 66.6288 70.0000 53.2270 58.0819 70.0000 70.0000 

TH18 29.4549 4.2083 27.3567 17.8535 28.3081 28.2981 20.1975 22.6220 

TH19 28.6106 7.3249 26.9728 19.7826 30.5617 27.0738 27.8923 19.4462 

TH20 29.4549 4.2083 27.3567 17.8535 28.3081 28.2981 20.1975 22.6220 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH23 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH24 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH25 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH26 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH27 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH28 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH29 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH30 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH31 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH32 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH33 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH34 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH35 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH36 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH37 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH38 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 
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Table 4.6.9 Thresholds for Cb color component of the natural and synthetic images 

for P = 10 for the sub-bands 39 to 84  

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH39 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH40 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH41 61.7475 70.0000 09.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH42 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH43 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH44 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH45 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH46 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH47 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH48 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH49 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH50 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH51 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH52 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH53 73.3448 70.0000 72.3247 70.0000 82.2475 80.8487 70.0000 70.0000 

TH54 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH55 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH56 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH57 1.4315 1.6228 1.3704 1.6228 0.1666 0.5532 6.8551 1.6228 

TH58 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH59 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH60 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH61 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH62 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH63 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH64 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH65 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH66 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH67 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH68 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH69 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH70 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH71 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH72 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH73 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH74 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH75 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH76 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH77 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH78 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH79 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH80 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 

TH81 61.7475 70.0000 59.1137 70.0000 7.1876 23.8641 295.7019 70.0000 

TH82 32.2947 4.2083 27.3567 17.8535 29.6438 34.3199 20.1975 204.0991 

TH83 28.6106 7.3249 27.0281 19.7826 28.3027 27.0738 173.6104 19.4462 

TH84 36.1844 7.9431 33.0939 4.5592 53.9887 52.7574 185.2020 267.5203 
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Table 4.6.10 Thresholds for Cb color component of the natural and synthetic 

images for P = 20 for the sub-bands 1 to 54 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 57.4281 8.4165 54.3194 35.7069 55.1036 53.5661 40.3951 45.2441 

TH3 56.6389 14.6499 53.2172 39.5652 54.7755 52.8321 55.7846 38.8925 

TH4 58.9109 15.8862 57.5661 9.1185 58.1273 57.4654 59.5092 59.3031 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 58.3610 8.4165 54.7134 35.7069 56.6163 55.6840 40.3951 45.2441 

TH7 57.2211 14.6499 53.7819 39.5652 58.8643 54.1475 55.7846 38.8925 

TH8 60.3829 15.8862 58.6283 9.1185 64.2932 62.1110 59.5092 59.3031 

TH9 136.5597 140.0000 136.6288 140.0000 123.2270 128.0819 140.0000 140.0000 

TH10 58.3610 8.4165 54.7134 35.7069 56.6163 55.6840 40.3951 45.2441 

TH11 57.2211 14.6499 53.7819 39.5652 58.8643 54.1475 55.7846 38.8925 

TH12 60.3829 15.8862 58.6283 9.1185 64.2932 62.1110 59.5092 59.3031 

TH13 136.5597 140.0000 136.6288 140.0000 123.2270 128.0819 140.0000 140.0000 

TH14 58.3610 8.4165 54.7134 35.7069 56.6163 55.6840 40.3951 45.2441 

TH15 57.2211 14.6499 53.7819 39.5652 58.8643 54.1475 55.7846 38.8925 

TH16 60.3829 15.8862 58.6283 9.1185 64.2932 62.1110 59.5092 59.3031 

TH17 136.5597 140.0000 136.6288 140.0000 123.2270 128.0819 140.0000 140.0000 

TH18 58.3610 8.4165 54.7134 35.7069 56.6163 55.6840 40.3951 45.2441 

TH19 57.2211 14.6499 53.7819 39.5652 58.8643 54.1475 55.7846 38.8925 

TH20 58.3610 8.4165 54.7134 35.7069 56.6163 55.6840 40.3951 45.2441 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH23 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH24 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH25 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH26 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH27 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH28 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH29 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH30 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH31 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH32 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH33 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH34 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH35 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH36 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH37 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH38 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH39 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH40 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH41 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH42 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH43 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH44 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH45 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH46 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH47 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH48 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH49 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH50 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH51 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH52 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH53 143.3448 140.0000 142.3247 140.0000 152.2475 150.8487 140.0000 140.0000 

TH54 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

(Continued) 
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Table 4.6.10 Thresholds for Cb color component of the natural and synthetic 

images for P = 20 for the sub-bands 55 to 84  

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH55 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH56 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH57 3.0542 3.2456 2.9932 3.2456 1.7894 2.1760 5.2323 3.2456 

TH58 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH59 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH60 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH61 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH62 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH63 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH64 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH65 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH66 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH67 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH68 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH69 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH70 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH71 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH72 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH73 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH74 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH75 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH76 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH77 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH78 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH79 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH80 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

TH81 131.7475 140.0000 129.1137 140.0000 77.1876 93.8641 225.7019 140.0000 

TH82 61.2008 8.4165 54.7134 35.7069 57.9519 61.7058 40.3951 226.7211 

TH83 57.2211 14.6499 53.8371 39.5652 56.6053 54.1475 201.5028 38.8925 

TH84 65.6930 15.8862 61.9308 9.1185 83.3778 81.7591 214.9566 297.1718 

 

Table 4.6.11 Thresholds for Cb color component of the natural and synthetic 

images for P = 30 for the sub-bands 1 to 18 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 86.3342 12.6248 81.6761 53.5604 83.4117 80.9520 60.5926 67.8661 

TH3 85.2495 21.9748 80.0262 59.3478 83.0782 79.9058 83.6769 58.3387 

TH4 88.4195 23.8293 86.4031 13.6777 87.5164 86.4671 89.2638 88.9546 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 87.2671 12.6248 82.0700 53.5604 84.9244 83.0699 60.5926 67.8661 

TH7 85.8317 21.9748 80.5909 59.3478 87.1670 81.2213 83.6769 58.3387 

TH8 89.8914 23.8293 87.4653 13.6777 93.6823 91.1127 89.2638 88.9546 

TH9 206.5597 210.0000 206.6288 210.0000 193.2270 198.0819 210.0000 210.0000 

TH10 87.2671 12.6248 82.0700 53.5604 84.9244 83.0699 60.5926 67.8661 

TH11 85.8317 21.9748 80.5909 59.3478 87.1670 81.2213 83.6769 58.3387 

TH12 89.8914 23.8293 87.4653 13.6777 93.6823 91.1127 89.2638 88.9546 

TH13 206.5597 210.0000 206.6288 210.0000 193.2270 198.0819 210.0000 210.0000 

TH14 87.2671 12.6248 82.0700 53.5604 84.9244 83.0699 60.5926 67.8661 

TH15 85.8317 21.9748 80.5909 59.3478 87.1670 81.2213 83.6769 58.3387 

TH16 89.8914 23.8293 87.4653 13.6777 93.6823 91.1127 89.2638 88.9546 

TH17 206.5597 210.0000 206.6288 210.0000 193.2270 198.0819 210.0000 210.0000 

TH18 87.2671 12.6248 82.0700 53.5604 84.9244 83.0699 60.5926 67.8661 

(Continued) 
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Table 4.6.11 Thresholds for Cb color component of the natural and synthetic 

images for P = 30 for the sub-bands 19 to 72  
 

Images  
Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 

Threshold 

TH19 85.8317 21.9748 80.5909 59.3478 87.1670 81.2213 83.6769 58.3387 

TH20 87.2671 12.6248 82.0700 53.5604 84.9244 83.0699 60.5926 67.8661 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH23 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH24 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH25 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH26 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH27 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH28 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH29 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH30 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH31 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH32 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH33 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH34 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH35 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH36 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH37 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH38 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH39 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH40 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH41 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH42 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH43 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH44 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH45 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH46 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH47 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH48 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH49 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH50 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH51 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH52 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH53 213.3448 210.0000 212.3247 210.0000 222.2475 220.8487 210.0000 210.0000 

TH54 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH55 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH56 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH57 4.6770 4.8683 4.6160 4.8683 3.4122 3.7988 3.6096 4.8683 

TH58 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH59 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH60 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH61 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH62 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH63 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH64 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH65 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH66 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH67 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH68 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH69 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH70 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH71 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH72 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

(Continued) 
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Table 4.6.11 Thresholds for Cb color component of the natural and synthetic 

images for P = 30 for the sub-bands 73 to 84 

 
TH73 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH74 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH75 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH76 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH77 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH78 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH79 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH80 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

TH81 201.7475 210.0000 199.1137 210.0000 147.1876 163.8641 155.7019 210.0000 

TH82 90.1068 12.6248 82.0700 53.5604 86.2601 89.0917 60.5926 249.3432 

TH83 85.8317 21.9748 80.6461 59.3478 84.9080 81.2213 229.3951 58.3387 

TH84 95.2016 23.8293 90.7678 13.6777 112.7669 110.7608 244.7112 326.8233 

 

Table 4.6.12 Thresholds for Cb color component of the natural and synthetic 

images for P = 40 for the sub-bands 1 to 38 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH2 115.2403 16.8331 109.0328 71.4139 111.7198 108.3379 80.7902 90.4881 

TH3 113.8600 29.2997 106.8352 79.1305 111.3808 106.9796 111.5692 77.7849 

TH4 117.9280 31.7724 115.2400 18.2369 116.9055 115.4688 119.0184 118.6061 

TH5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

TH6 116.1732 16.8331 109.4267 71.4139 113.2325 110.4558 80.7902 90.4881 

TH7 114.4422 29.2997 107.3999 79.1305 115.4696 108.2950 111.5692 77.7849 

TH8 119.4000 31.7724 116.3022 18.2369 123.0714 120.1144 119.0184 118.6061 

TH9 276.5597 280.0000 276.6288 280.0000 263.2270 268.0819 280.0000 280.0000 

TH10 116.1732 16.8331 109.4267 71.4139 113.2325 110.4558 80.7902 90.4881 

TH11 114.4422 29.2997 107.3999 79.1305 115.4696 108.2950 111.5692 77.7849 

TH12 119.4000 31.7724 116.3022 18.2369 123.0714 120.1144 119.0184 118.6061 

TH13 276.5597 280.0000 276.6288 280.0000 263.2270 268.0819 280.0000 280.0000 

TH14 116.1732 16.8331 109.4267 71.4139 113.2325 110.4558 80.7902 90.4881 

TH15 114.4422 29.2997 107.3999 79.1305 115.4696 108.2950 111.5692 77.7849 

TH16 119.4000 31.7724 116.3022 18.2369 123.0714 120.1144 119.0184 118.6061 

TH17 276.5597 280.0000 276.6288 280.0000 263.2270 268.0819 280.0000 280.0000 

TH18 116.1732 16.8331 109.4267 71.4139 113.2325 110.4558 80.7902 90.4881 

TH19 114.4422 29.2997 107.3999 79.1305 115.4696 108.2950 111.5692 77.7849 

TH20 116.1732 16.8331 109.4267 71.4139 113.2325 110.4558 80.7902 90.4881 

TH21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

TH22 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH23 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH24 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH25 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH26 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH27 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH28 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH29 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH30 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH31 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH32 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH33 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH34 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH35 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH36 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH37 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH38 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

(Continued) 
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Table 4.6.12 Thresholds for Cb color component of the natural and synthetic 

images for P = 40 for the sub-bands 39 to 84 

 
Images  

Aishwarya Lena Donkey Barbara Mandrill Rose Horizontal Vertical 
Threshold 

TH39 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH40 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH41 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH42 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH43 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH44 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH45 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH46 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH47 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH48 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH49 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH50 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH51 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH52 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH53 283.3448 280.0000 282.3247 280.0000 292.2475 290.8487 280.0000 280.0000 

TH54 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH55 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH56 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH57 6.2998 6.4911 6.2387 6.4911 5.0350 5.4216 1.9868 6.4911 

TH58 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH59 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH60 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH61 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH62 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH63 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH64 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH65 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH66 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH67 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH68 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH69 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH70 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH71 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH72 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH73 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH74 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH75 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH76 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH77 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH78 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH79 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH80 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 

TH81 271.7475 280.0000 269.1137 280.0000 217.1876 233.8641 85.7019 280.0000 

TH82 119.0129 16.8331 109.4267 71.4139 114.5682 116.4775 80.7902 271.9652 

TH83 114.4422 29.2997 107.4551 79.1305 113.2106 108.2950 257.2874 77.7849 

TH84 124.7101 31.7724 119.6047 18.2369 142.1561 139.7625 274.4658 356.4748 
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4.7.0 ENCODING 

After the process of thresholding, most of the components are adjusted to zero 

values, and encoder further compresses the coefficients of wavelet packets tree to give 

better overall compression. An encoding process removes the redundancy in the form of 

repetitive bit patterns in the output of thresholding.  It uses a model to determine 

accurately the probabilities for each coefficient value and produces an appropriate code 

based on these probabilities, so that the resultant output code-stream will be smaller 

than the input stream. The most commonly used entropy encoders are Huffman encoder, 

and Arithmetic encoder. Simple Run-Length Encoding (RLE) has proven very effective 

encoding in many applications. Run-Length Encoding is a pattern recognition scheme 

that searches for the repetition (redundancy) of identical data values in the code-stream. 

The data set can be compressed by replacing the repetitive sequence with a single data 

value and length of that data. Huffman and Arithmetic codes substitute bit patterns for 

symbols based on the frequencies of the symbols [93]. The Huffman algorithm requires 

each code to have an integral number of bits. And arithmetic coding method allows for 

fractional number of bits per code by grouping two or more such codes together into a 

block composed of an integral number of bits [23]. This allows arithmetic code to 

outperform Huffman code, and consequently arithmetic code is more commonly used 

encoding in wavelet-based algorithms. The researcher has provided the results using 

Huffman encoding as well as Arithmetic encoding with conclusion.  

The researcher suggests the modified technique for the encoding. After the 

thresholding, repetitions of the coefficients of a wavelet packets tree can be a eliminated 

by using suggested Enhanced Run-Length Encoding, and then for the bit coding well 

known Huffman coding or Arithmetic coding methods are used.  

The problems with existing Run Length Encoding, is that the compression ratio 

obtained from run-length encoding schemes vary depending on the type of data to be 

encoded, and the repetitions present within the data set. Some data sets can be highly 

compressed by run-length encoding whereas other data sets can actually grow larger due 

to the encoding [23]. This problem of an existing run-length encoding techniques are 

eliminated up to the certain extent by using Enhanced Run-Length Encoding 

technique. In the proposed Enhanced RLE, the coefficients Xi and Xi+1 are compared, 

and if |Xi - Xi+1| is less than acceptable value then Xi and Xi+1 are treated as Xi only. 

This Enhanced RLE introduces an error. The error introduced is a function of 

acceptable value. This acceptable value, suggested by the researcher is the function of 
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the energy contain of an image. The acceptable value is calculated as, 

( )100(  imageofenergyofmeanE ).  

Although this method overcomes the problem of RLE, it introduces little error, 

which is not much noticeable. As the flexibility is already extended to the user about 

required quality of resultant image verses compression ratio by selecting the value of P, 

the effect of error introduced by Enhanced RLE technique is compensated. The 

proposed algorithm is tested over the natural and synthetic images, for the different 

values of P, which is given in the results and the conclusions, are drawn based on it.  

______________ 
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CHAPTER 5 

RESULTS 

 There are various methods available for still image compression. JPEG and 

JPEG-2000 are the popular standards available for still image compression. JPEG uses 

the Discrete Cosine Transform for the transformation while JPEG-2000 uses Discrete 

Wavelet Transform. The disadvantages of the existing compression methods are 

discussed in chapter-2. In the proposed image compression technique, wavelet packets 

best tree based on energy contents with adaptive thresholds are used. The parameter P 

provides the flexibility to the user to select desired image quality and compression ratio. 

The results for the different values of P for different natural and synthetic images are 

given in this chapter. 

5.1.0 PERCENTAGE OF ZEROS vs THRESHOLD 

 Wavelet transform transforms, the image from spatial domain to frequency 

domain. Wavelet transform and wavelet packets are nearly similar, the only difference 

is that in wavelet transform the approximate component is further decomposed but in 

wavelet packets the decomposition is carried out with approximate as well as detail 

components. After the transformation the image is represented by a set of wavelet 

packets coefficients. The high compression ratio is achieved by using the thresholding 

to the wavelet packets coefficients. The relation between the percentage of zeros vs 

threshold for Bior2.2 wavelet for natural and synthetic images is given in the figure 

5.1.1 to 5.1.12. More percentage of zeros yields more compression. The natural test 

images are AISHWARYA, CHEETAH, LENA, BARBARA, MANDRILL, FINGURE, BIRD, ROSE, 

DONKEY and synthetic images are BUTTERFLY, DIAGONAL, HORIZONTAL, and 

VERTICAL.  

 

 

 

 
Figure 5.1.1 Percentage of Zeros vs Threshold for 

the image AISHWARYA 
Figure 5.1.2 Percentage of Zeros vs Threshold 

for the image CHEETAH 
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Figure 5.1.3 Percentage of Zeros vs Threshold for 

the image LENA 

Figure 5.1.4 Percentage of Zeros vs Threshold 

for the image BIRD 

  

Figure 5.1.5 Percentage of Zeros vs Threshold for 

the image BARBARA 

Figure 5.1.6 Percentage of Zeros vs Threshold 

for the image DONKEY 

  

Figure 5.1.7 Percentage of Zeros vs Threshold for 

the image MANDRILL 

Figure 5.1.8 Percentage of Zeros vs Threshold 

for the image FLOWER 

 

 

  



  163 

  

Figure 5.1.9 Percentage of Zeros vs Threshold 

for the image BUTTERFLY 

Figure 5.1.10 Percentage of Zeros vs Threshold 

for the image HORIZONTAL 

  

Figure 5.1.11 Percentage of Zeros vs Threshold 

for the image VERTICAL 

Figure 5.1.12 Percentage of Zeros vs Threshold 

for the image DIAGONAL 
 

5.2.0 RESULTS FOR THE PROPOSED METHODS 

 The proposed algorithm is implemented and tested over the range of natural and 

synthetic images. The results are given in terms of percentage of compression, 

compression ratio, and peak signal to noise ratio. Every set of result corresponds to a 

value of P, the flexibility parameter. The natural test images used are AISHWARYA, 

CHEETAH, LENA, BARBARA, MANDRILL, BIRD, ROSE, DONKEY, and synthetic images 

used are BUTTERFLY, HORIZONTAL, and VERTICAL.  The tables 5.2.1 to 5.2.4 show the 

results for the proposed methods with a value of P as 5, 10, 20, 30, 40, 50 and 60 using 

Arithmetic Coding. The tables 5.2.5 to 5.2.8 show the results for the proposed methods 

with a value of P as 5, 10, 20, 30, 40, 50 and 60 using Huffman Coding. The results for 

existing standards JPEG-2000 are also given in the table 5.2.9.  
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Table 5.2.1 Results of selected Images using Arithmetic Coding 

Constant P = 5 Constant P = 10 

Image Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

AISHWARYA 94.6834 19 80.0646 96.1687 27 84.2313 

CHEETAH 90.1475 11 79.1685 92.6 14 73.6295 

LENA 95.7446 24 85.6561 97.1908 36 85.9624 

BARBARA 84.634 7 71.921 90.231 11 67.8158 

MANDRILL 72.5561 4 62.1245 80.702 6 60.0194 

BIRD 90.1223 11 75.417 94.0162 17 73.7004 

ROSE 74.2142 4 65.134 82.2271 6 62.7118 

DONKEY 83.9696 7 72.2084 88.0107 9 69.2338 

BUTTERFLY 81.8855 6 77.4233 88.3102 9 68.8355 

HORIZONTAL 80.0731 6 60.1863 82.6058 6 59.5537 

VERTICAL 92.8208 14 77.3835 95.8693 25 12.6192 

 

Table 5.2.2 Results of selected Images using Arithmetic Coding 

 
Constant P = 20 Constant P = 30 

Image Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

AISHWARYA 96.9113 33 78.9871 97.6032 42 75.9537 

CHEETAH 95.415 22 67.0735 96.5636 30 63.6988 

LENA 97.894 48 79.6256 98.4183 64 74.8504 

BARBARA 94.3057 18 61.49 96.3771 28 56.3253 

MANDRILL 83.7612 7 56.812 90.9178 12 18.163 

BIRD 95.6095 23 67.4469 96.7617 31 65.7065 

ROSE 84.1035 7 58.5079 91.8946 13 51.9217 

DONKEY 92.7269 14 30.7286 95.0737 21 30.7342 

BUTTERFLY 92.5796 14 61.1711 94.5351 19 50.7274 

HORIZONTAL 86.2933 8 54.9828 88.0867 9 54.4989 

VERTICAL 95.8693 25 19.88 96.6574 30 57.2394 

 

Table 5.2.3 Results of selected Images using Arithmetic Coding 

 
Constant P = 40 Constant P = 50 

Image Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

AISHWARYA 97.8096 46 71.231 97.958 49 67.891 

CHEETAH 97.1794 36 61.5553 97.4353 39 60.1865 

LENA 98.542 69 70.1371 98.6133 73 67.7423 

BARBARA 96.953 33 54.0879 97.0091 34 52.8408 

MANDRILL 93.3606 16 48.5085 94.4997 19 47.074 

BIRD 97.1253 35 62.339 97.2886 37 59.9416 

ROSE 93.4251 16 49.7758 94.2324 18 48.3914 

DONKEY 96.1503 26 54.4774 96.709 31 52.5357 

BUTTERFLY 95.5221 23 48.5618 96.1497 26 47.5036 

HORIZONTAL 89.1933 10 52.1679 90.2355 11 49.1411 

VERTICAL 97.1568 36 53.849 97.518 41 51.2781 
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Table 5.2.4 Results of selected Images using Arithmetic Coding 

 
Constant P = 60 

Image Percentage of compression Compression ratio Peak signal to noise ratio (dB) 

AISHWARYA 98.0875 53 64.8412 

CHEETAH 97.574 42 59.1732 

LENA 98.6628 75 66.7228 

BARBARA 97.2696 37 51.9716 

MANDRILL 95.2328 21 46.1098 

BIRD 97.4229 39 57.2633 

ROSE 94.8824 20 46.7576 

DONKEY 97.0665 35 50.6168 

BUTTERFLY 96.5764 30 46.5698 

HORIZONTAL 91.5253 12 47.7637 

VERTICAL 97.7864 46 49.5102 

 

Table 5.2.5 Results of selected Images using Huffman Coding 

 
Constant P = 5 Constant P = 10 

Image Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

AISHWARYA 94.0499 17 80.0646 95.8209 24 84.2313 

CHEETAH 87.8819 9 79.1685 91.0508 12 73.6295 

LENA 94.7726 20 85.6561 96.6427 30 85.9624 

BARBARA 81.7345 6 71.921 88.5815 9 67.8158 

MANDRILL 72.5561 4 62.1295 76.5062 5 60.0194 

BIRD 87.6788 9 75.417 93.0627 15 73.7004 

ROSE 69.1386 4 65.134 79.1288 5 62.7118 

DONKEY 81.2424 6 72.2084 86.1908 8 69.2338 

BUTTERFLY 75.7517 5 77.4233 85.149 7 68.8355 

HORIZONTAL 73.1801 4 60.1883 76.2735 5 59.5537 

VERTICAL 91.5972 12 77.3835 93.6096 16 67.2358 

 

Table 5.2.6 Results of selected Images using Huffman Coding 

 
Constant P = 20 Constant P = 30 

Image Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

AISHWARYA 96.7088 31 78.9871 97.4684 40 75.9537 

CHEETAH 94.7329 19 67.0735 96.3183 28 63.6988 

LENA 97.532 41 79.6256 98.1875 56 74.8504 

BARBARA 93.4905 16 61.49 95.5038 23 56.3253 

MANDRILL 80.372 6 56.812 89.3435 10 51.9118 

BIRD 95.0405 21 67.4469 96.4562 29 65.7065 

ROSE 81.6376 6 58.5079 90.8829 11 51.9217 

DONKEY 91.8327 13 63.4845 94.5427 19 58.5874 

BUTTERFLY 90.7799 11 61.1711 93.5625 16 50.7274 

HORIZONTAL 81.0719 6 54.9828 83.2592 6 54.4989 

VERTICAL 95.2496 22 62.2183 96.2783 27 57.2394 
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Table 5.2.7 Results of selected Images using Huffman Coding 

 
Constant P = 40 Constant P = 50 

Image Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

Percentage 

of 

compression 

Compres

sion 

ratio 

Peak signal 

to noise 

ratio (dB) 

AISHWARYA 97.6873 44 71.231 97.8453 47 67.9816 

CHEETAH 96.9972 34 61.5553 97.2941 37 60.1865 

18LENA 98.3408 61 70.1371 98.4298 64 67.7423 

BARBARA 96.2805 27 54.0879 96.7158 31 52.8408 

MANDRILL 92.3307 14 48.5085 93.6994 16 47.074 

BIRD 96.8005 32 62.339 96.9788 34 59.9416 

ROSE 92.7555 14 49.7758 93.6941 16 48.3914 

DONKEY 95.7835 24 54.4774 96.3996 28 52.5357 

BUTTERFLY 94.7574 20 48.5618 95.5122 23 47.5036 

HORIZONTAL 85.5953 7 52.1679 87.2958 8 49.1411 

VERTICAL 96.8418 32 53.849 97.2495 37 51.2781 

 

Table 5.2.8 Results of selected Images using Huffman Coding 

 
Constant P = 60 

Image Percentage of compression Compression ratio Peak signal to noise ratio (dB) 

AISHWARYA 97.6873 50 64.8412 

CHEETAH 97.3983 39 59.1732 

LENA 98.4885 67 66.7228 

BARBARA 97.0166 34 51.9716 

MANDRILL 94.5585 19 46.1098 

BIRD 97.1217 35 57.2633 

ROSE 94.4339 18 46.7576 

DONKEY 97.0665 35 50.6168 

BUTTERFLY 96.0195 26 46.5698 

HORIZONTAL 89.2611 10 47.7637 

VERTICAL 97.5687 42 49.5102 

 

Table 5.2.9 Results of selected Images using JEPG-2000 

 
Image Original size 

(KB) 

Compressed 

size (KB) 

Compression 

ratio 

Percentage of 

compression 

Peak signal to 

noise ratio (dB) 

AISHWARYA 901 216 4.1712 24 191.6040 

CHEETAH 901 147 6.1292 16 241.2325 

LENA 901 87 10.6 10 170.5337 

BARBARA 765 154 4.9675 20 153.3857 

MANDRILL 769 341 2.2551 44 185.8936 

BIRD 901 339 2.6578 38 200.7146 

ROSE 901 402 2.2412 45 186.2608 

DONKEY 774 246 3.1463 32 191.3145 

BUTTERFLY 385 108 3.5648 28 197.1621 

HORIZONTAL 632 18 35.1111 3 192.9029 

VERTICAL 685 38 18.0263 5 238.4996 

 

The original image and resultant compressed images of presented algorithm using 

Arithmetic encoding for different values of P are shown in figure 5.2.1 to 5.2.88.  



  167 

 

 

 Compression Ratio = 19 

PSNR = 80.0646 dB 

  

Figure 5.2.1 Original image AISHWARYA  Figure 5.2.2 Compressed image with P = 5 using 

Arithmetic Encoding 

  

Compression Ratio = 27 

PSNR = 84.2313 dB 

Compression Ratio = 33 

PSNR = 78.9871 dB 

  

Figure 5.2.3 Compressed image with P = 10 

using Arithmetic Encoding 

Figure 5.2.4 Compressed image with P = 20 

using Arithmetic Encoding 

  

Compression Ratio = 42 

PSNR = 75.9537 dB 

Compression Ratio = 46 

PSNR = 71.231 dB 

  

Figure 5.2.5 Compressed image with P = 30 

using Arithmetic Encoding 

Figure 5.2.6 Compressed image with P = 40 

using Arithmetic Encoding 
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Compression Ratio = 49  

PSNR = 67.891 dB 

Compression Ratio = 53 

PSNR = 64.8412 dB 

  

Figure 5.2.7 Compressed image with P = 50 

using Arithmetic Encoding 

Figure 5.2.8 Compressed image with P = 60 

using Arithmetic Encoding 

  

 Compression Ratio = 11 
PSNR = 79.1685 dB 

  

Figure 5.2.9 Original CHEETAH Image Figure 5.2.10 Compressed image with P = 5 

using Arithmetic Encoding 

  

Compression Ratio = 14 

PSNR = 73.6295 dB 

Compression Ratio = 22 

PSNR = 67.0735 dB 

  

Figure 5.2.11 Compressed image with P = 10 

using Arithmetic Encoding 

Figure 5.2.12 Compressed image with P = 20 

using Arithmetic Encoding 
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Compression Ratio = 30  

PSNR = 63.6988 dB 

Compression Ratio = 36 

PSNR = 61.5553 dB 

  

Figure 5.2.13 Compressed image with P = 30 

using Arithmetic Encoding 

Figure 5.2.14 Compressed image with P = 40 

using Arithmetic Encoding 

  

Compression Ratio = 39 

PSNR = 60.1865 dB 

Compression Ratio = 42 

PSNR = 59.1732 dB 

  

Figure 5.2.15 Compressed image with P = 50 

using Arithmetic Encoding 

Figure 5.2.16 Compressed image with P = 60 

using Arithmetic Encoding 

  

 Compression Ratio = 24 

PSNR = 85.6561 dB 

  

Figure 5.2.17 Original LENA Image Figure 5.2.18 Compressed image with P = 5 

using Arithmetic Encoding 
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Compression Ratio = 36 

PSNR = 85.9624 dB 

Compression Ratio = 48 

PSNR = 79.6256 dB 

  

Figure 5.2.19 Compressed image with P =10 

using Arithmetic Encoding 

Figure 5.2.20 Compressed image with P = 20 

using Arithmetic Encoding 

  

Compression Ratio = 64 

PSNR = 74..8504 dB 

Compression Ratio = 69 

PSNR = 70.1371 dB 

  

Figure 5.2.21 Compressed image with P =30 

using Arithmetic Encoding 

Figure 5.2.22 Compressed image with P = 40 

using Arithmetic Encoding 

  

Compression Ratio = 73 

PSNR = 67.7423 dB 

Compression Ratio = 75 

PSNR = 66.7228 dB 

  

Figure 5.2.23 Compressed image with P =50 

using Arithmetic Encoding 

Figure 5.2.24 Compressed image with P = 60 

using Arithmetic Encoding 
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 Compression Ratio = 7 

PSNR = 71.921 dB 

  

Figure 5.2.25 Original BARBARA Image Figure 5.2.26 Compressed image with P = 5 

using Arithmetic Encoding 

  

Compression Ratio = 11 

PSNR = 67.8158 dB 

Compression Ratio = 18 

PSNR = 61.49 dB 

  

Figure 5.2.27 Compressed image with P =10 

using Arithmetic Encoding 

Figure 5.2.128 Compressed image with P = 20 

using Arithmetic Encoding 

  

Compression Ratio = 28 

PSNR = 56.3253 dB 

Compression Ratio =33 

PSNR = 54.0879 dB 

  

Figure 5.2.29 Compressed image with P =30 

using Arithmetic Encoding 

Figure 5.2.30 Compressed image with P = 40 

using Arithmetic Encoding 
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Compression Ratio = 34 

PSNR = 52.8408 dB 

Compression Ratio =37  

PSNR = 51.9716 dB 

  

Figure 5.2.31 Compressed image with P = 50 

using Arithmetic Encoding 

Figure 5.2.32 Compressed image with P = 60 

using Arithmetic Encoding 

  

 Compression Ratio = 4 

PSNR = 62.1245 dB 

  

Figure 5.2.33 Original MANDRILL Image Figure 5.2.34 Compressed image with P = 5 

using Arithmetic Encoding 

  

Compression Ratio = 6 

PSNR = 60.0194 dB 

Compression Ratio = 7  

PSNR = 56.812 dB 

  

Figure 5.2.35 Compressed image with P =10 

using Arithmetic Encoding 

Figure 5.2.36 Compressed image with P = 20 

using Arithmetic Encoding 



  173 

Compression Ratio = 12 

PSNR = 18.163 dB 

Compression Ratio = 16 

PSNR = 48.5085 dB 

  

Figure 5.2.37 Compressed image with P =30 

using Arithmetic Encoding 

Figure 5.2.38 Compressed image with P = 40 

using Arithmetic Encoding 

  

Compression Ratio = 19 

PSNR = 47.074 dB 

Compression Ratio = 21 

PSNR = 46.1098 dB 

  

Figure 5.2.39 Compressed image with P = 50 

using Arithmetic Encoding 

Figure 5.2.40 Compressed image with P = 60 

using Arithmetic Encoding 

  

 Compression Ratio = 11 

PSNR = 75.417dB 

  

Figure 5.2.41 Original BIRD Image Figure 5.2.42 Compressed image with P = 5 

using Arithmetic Encoding 
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Compression Ratio = 17 

PSNR = 73.004 dB 

Compression Ratio = 23 

PSNR = 67.4469 dB 

  

Figure 5.2.43 Compressed image with P =10 

using Arithmetic Encoding 

Figure 5.2.44 Compressed image with P = 20 

using Arithmetic Encoding 

  

Compression Ratio = 31 

PSNR = 65.7065 dB 

Compression Ratio = 35 

PSNR = 62.339 dB 

  

Figure 5.2.45 Compressed image with P =30 

using Arithmetic Encoding 

Figure 5.2.46 Compressed image with P = 40 

using Arithmetic Encoding 

  

Compression Ratio = 37 

PSNR = 59.9416 dB 

Compression Ratio = 39 

PSNR = 57.2633 dB 

  

Figure 5.2.47 Compressed image with P = 50 

using Arithmetic Encoding 

Figure 5.2.48 Compressed image with P = 60 

using Arithmetic Encoding 
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 Compression Ratio = 4 

PSNR = 65.134 dB 

  

Figure 5.2.49 Original ROSE Image Figure 5.2.50 Compressed image with P = 5 

using Arithmetic Encoding 

  

Compression Ratio = 6  

PSNR = 62.7118 dB 

Compression Ratio = 7 

PSNR = 58.5079 dB 

  

Figure 5.2.51 Compressed image with P =10 

using Arithmetic Encoding 

Figure 5.2.52 Compressed image with P = 20 

using Arithmetic Encoding 

Compression Ratio = 13 

PSNR = 51.9217 dB 

Compression Ratio = 16 

PSNR = 49.7758 dB 

  

Figure 5.2.53 Compressed image with P =30 

using Arithmetic Encoding 

Figure 5.2.54 Compressed image with P = 40 

using Arithmetic Encoding 
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Compression Ratio = 18  

PSNR = 48.3914 dB 

Compression Ratio = 20 

PSNR = 46.7576 dB 

  

Figure 5.2.55 Compressed image with P = 50 

using Arithmetic Encoding 

Figure 5.2.56 Compressed image with P = 60 

using Arithmetic Encoding 

  

 Compression Ratio = 7 

PSNR = 72.2084 dB 

  

Figure 5.2.57 Original DONKEY Image Figure 5.2.58 Compressed image with P = 5 

using Arithmetic Encoding 

  

Compression Ratio = 9 

PSNR = 69.2338 dB 

Compression Ratio =14  

PSNR = 30.7286 dB 

  

Figure 5.2.59 Compressed image with P =10 

using Arithmetic Encoding 

Figure 5.2.60 Compressed image with P = 20 

using Arithmetic Encoding 
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Compression Ratio = 21 

PSNR = 30.7342 dB 

Compression Ratio = 26 

PSNR = 54.4774 dB 

  

Figure 5.2.61 Compressed image with P =30 

using Arithmetic Encoding 

Figure 5.2.62 Compressed image with P = 40 

using Arithmetic Encoding 

  

Compression Ratio = 31 

PSNR = 52.5357 dB 

Compression Ratio = 35 

PSNR = 50.6168 dB 

  

Figure 5.2.63 Compressed image with P = 50 

using Arithmetic Encoding 

Figure 5.2.64 Compressed image with P = 60 

using Arithmetic Encoding 

  

 Compression Ratio = 6 

PSNR = 77.4233 dB 

  

Figure 5.2.65 Original BUTTERFLY Image Figure 5.2.66 Compressed image with P = 5 

using Arithmetic Encoding 
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Compression Ratio = 9 

PSNR = 68.8355 dB 

Compression Ratio = 14 

PSNR = 61.1711 dB 

  

Figure 5.2.67 Compressed image with P =10 

using Arithmetic Encoding 

Figure 5.2.68 Compressed image with P = 20 

using Arithmetic Encoding 

  

Compression Ratio = 19 

PSNR = 50.7274 dB 

Compression Ratio = 23 

PSNR = 48.5618 dB 

  

Figure 5.2.69 Compressed image with P =30 

using Arithmetic Encoding 

Figure 5.2.70 Compressed image with P = 40 

using Arithmetic Encoding 

  

Compression Ratio = 26 

PSNR = 47.5036 dB 

Compression Ratio = 30 

PSNR = 46.5698 dB 

 
 

Figure 5.2.71 Compressed image with P = 50 

using Arithmetic Encoding 

Figure 5.2.72 Compressed image with P = 60 

using Arithmetic Encoding 
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 Compression Ratio = 6 

PSNR = 60.1863dB 

  

Figure 5.2.73 Original HORIZONTAL LINE 

Image 

Figure 5.2.74 Compressed image with P = 5 

using Arithmetic Encoding 

  

Compression Ratio = 6 

PSNR = 59.5537 dB 

Compression Ratio = 8 

PSNR = 54.9828 dB 

  

Figure 5.2.75 Compressed image with P =10 

using Arithmetic Encoding 

Figure 5.2.76 Compressed image with P = 20 

using Arithmetic Encoding 

  

Compression Ratio = 9 

PSNR = 54.4989 dB 

Compression Ratio = 10 

PSNR = 52.1679 dB 

  

Figure 5.2.77 Compressed image with P =30 

using Arithmetic Encoding 

Figure 5.2.78 Compressed image with P = 40 

using Arithmetic Encoding 
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Compression Ratio = 11 

PSNR = 49.1411 dB 

Compression Ratio = 12 

PSNR = 47.7637 dB 

  

Figure 5.2. 79 Compressed image with P = 50 

using Arithmetic Encoding 

Figure 5.2.80 Compressed image with P = 60 

using Arithmetic Encoding 

  

 Compression Ratio = 14 

PSNR = 77.3835 dB 

  

Figure 5.2.81 Original VERTICAL LINE Image Figure 5.2.82 Compressed image with P = 5 

using Arithmetic Encoding 

  

Compression Ratio = 25 

PSNR = 12.6192 dB 

Compression Ratio = 25  

PSNR = 19.88 dB 

  

Figure 5.2.83 Compressed image with P =10 

using Arithmetic Encoding 

Figure 5.2.84 Compressed image with P = 20 

using Arithmetic Encoding 
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Compression Ratio = 30 

PSNR = 57.2394 dB 

Compression Ratio =36 

PSNR = 53.849 dB 

  

Figure 5.2.85 Compressed image with P =30 

using Arithmetic Encoding 

Figure 5.2.86 Compressed image with P = 40 

using Arithmetic Encoding 

  

Compression Ratio = 41 

PSNR = 51.2781 dB 

Compression Ratio = 46 

PSNR = 49.5102 dB 

  

Figure 5.2.87 Compressed image with P = 50 

using Arithmetic Encoding 

Figure 5.2.88 Compressed image with P = 60 

using Arithmetic Encoding 
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The original image and resultant compressed images of presented algorithm using 

Huffman encoding for different values of P are shown in figure 5.2.89 to 5.2.176. 

 

 

 Compression Ratio =17  

PSNR = 80.0646 dB 

  

Figure 5.2.89 Original image AISHWARYA  Figure 5.2.90 Compressed image with P = 5 

using Huffman Encoding 

  

Compression Ratio = 24 

PSNR = 84.2313 dB 

Compression Ratio = 31 

PSNR = 78.9871 dB 

  

Figure 5.2.91 Compressed image with P = 10 

using Huffman Encoding 

Figure 5.2.92 Compressed image with P = 20 

using Huffman Encoding 

  

Compression Ratio = 40 

PSNR = 75.9537 dB 

Compression Ratio = 46 

PSNR = 71.231 dB 

  

Figure 5.2.93 Compressed image with P = 30 

using Huffman Encoding 

Figure 5.2.94 Compressed image with P = 40 

using Huffman Encoding 
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Compression Ratio = 47  

PSNR = 67.9816 dB 

Compression Ratio = 50 

PSNR = 64.8412 dB 

  

Figure 5.2.95 Compressed image with P = 50 

using Huffman Encoding 

Figure 5.2.96 Compressed image with P = 60 

using Huffman Encoding 

 

 Compression Ratio = 9 

PSNR = 79.1685 dB 

  

Figure 5.2.97 Original CHEETAH Image Figure 5.2.98 Compressed image with P = 5 

using Huffman Encoding 

  

Compression Ratio = 12 

PSNR = 73.6295 dB 

Compression Ratio = 19 

PSNR = 67.0735 dB 

  

Figure 5.2.99 Compressed image with P = 10 

using Huffman Encoding 

Figure 5.2.100 Compressed image with P = 20 

using Huffman Encoding 
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Compression Ratio = 28  

PSNR = 63.6988 dB 

Compression Ratio = 34 

PSNR = 61.5553 dB 

  

Figure 5.2.101 Compressed image with P = 30 

using Huffman Encoding 

Figure 5.2.102 Compressed image with P = 40 

using Huffman Encoding 

  

Compression Ratio = 37 

PSNR = 60.1865 dB 

Compression Ratio =39  

PSNR = 59.1732 dB 

  

Figure 5.2.103 Compressed image with P = 50 

using Huffman Encoding 

Figure 5.2.104 Compressed image with P = 60 

using Huffman Encoding 

  

 Compression Ratio =20  

PSNR = 85.6561 dB 

  

Figure 5.2.105 Original LENA Image Figure 5.2.106 Compressed image with P = 5 

using Huffman Encoding 
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Compression Ratio = 30 

PSNR = 85.9624 dB 

Compression Ratio = 41 

PSNR = 79.6256 dB 

  

Figure 5.2.107 Compressed image with P =10 

using Huffman Encoding 

Figure 5.2.108 Compressed image with P = 20 

using Huffman Encoding 

Compression Ratio = 56 

PSNR = 74.8504 dB 

Compression Ratio = 61 

PSNR = 70.1371 dB 

  

Figure 5.2.109 Compressed image with P =30 

using Huffman Encoding 

Figure 5.2.110 Compressed image with P = 40 

using Huffman Encoding 

  

Compression Ratio = 64 

PSNR = 67.7423 dB 

Compression Ratio = 67 

PSNR = 66.7228 dB 

  

Figure 5.2.111 Compressed image with P =50 

using Huffman Encoding 

Figure 5.2.112 Compressed image with P = 60 

using Huffman Encoding 
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 Compression Ratio = 6 

PSNR = 71.921 dB 

 
 

Figure 5.2.113 Original BARBARA Image Figure 5.2.114 Compressed image with P = 5 

using Huffman Encoding 

Compression Ratio = 9 

PSNR = 67.8158 dB 

Compression Ratio = 16  

PSNR = 61.49 dB 

  

Figure 5.2.115 Compressed image with P =10 

using Huffman Encoding 

Figure 5.2.116 Compressed image with P = 20 

using Huffman Encoding 

  

Compression Ratio = 23 

PSNR = 56.3253 dB 

Compression Ratio = 27 

PSNR = 54.0879 dB 

  

Figure 5.2.117 Compressed image with P =30 

using Huffman Encoding 

Figure 5.2.118 Compressed image with P = 40 

using Huffman Encoding 
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Compression Ratio = 31 

PSNR = 52.8408 dB 

Compression Ratio = 34 

PSNR = 51.9716 dB 

  

Figure 5.2.119 Compressed image with P = 50 

using Huffman Encoding 

Figure 5.2.120 Compressed image with P = 60 

using Huffman Encoding 

 Compression Ratio = 4 

PSNR = 62.1295 dB 

  

Figure 5.2.121 Original MANDRILL Image Figure 5.2.122 Compressed image with P = 5 

using Huffman Encoding 

  

Compression Ratio = 5 

PSNR = 60.0194 dB 

Compression Ratio = 6 

PSNR = 56.812 dB 

  

Figure 5.2.123 Compressed image with P =10 

using Huffman Encoding 

Figure 5.2.124 Compressed image with P = 20 

using Huffman Encoding 
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Compression Ratio = 10 

PSNR = 51.9118 dB 

Compression Ratio = 14 

PSNR = 48.5085 dB 

  

Figure 5.2.125 Compressed image with P =30 

using Huffman Encoding 

Figure 5.2.126 Compressed image with P = 40 

using Huffman Encoding 

Compression Ratio = 16 

PSNR = 47.074 dB 

Compression Ratio =19  

PSNR = 46.1098 dB 

  

Figure 5.2.127 Compressed image with P = 50 

using Huffman Encoding 

Figure 5.2.128 Compressed image with P = 60 

using Huffman Encoding 

  

 Compression Ratio = 9 

PSNR = 75.417 dB 

  

Figure 5.2.129 Original BIRD Image Figure 5.2.130 Compressed image with P = 5 

using Huffman Encoding 
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Compression Ratio = 15 

PSNR = 73.7004 dB 

Compression Ratio = 21 

PSNR = 67.4469 dB 

  

Figure 5.2.131 Compressed image with P =10 

using Huffman Encoding 

Figure 5.2.132 Compressed image with P = 20 

using Huffman Encoding 

  

Compression Ratio = 29 

PSNR = 65.7065 dB 

Compression Ratio = 32 

PSNR = 62.339 dB 

  

Figure 5.2.133 Compressed image with P =30 

using Huffman Encoding 

Figure 5.2.134 Compressed image with P = 40 

using Huffman Encoding 

  

Compression Ratio = 34 

PSNR = 59.9416 dB 

Compression Ratio =35  

PSNR = 57.2633 dB 

  

Figure 5.2.135 Compressed image with P = 50 

using Huffman Encoding 

Figure 5.2.136 Compressed image with P = 60 

using Huffman Encoding 
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 Compression Ratio = 4 

PSNR = 65.134 dB 

  

Figure 5.2.137 Original ROSE Image Figure 5.2.138 Compressed image with P = 5 

using Huffman Encoding 

Compression Ratio = 5  

PSNR = 62.7118 dB 

Compression Ratio = 6 

PSNR = 58.5079 dB 

  

Figure 5.2.139 Compressed image with P =10 

using Huffman Encoding 

Figure 5.2.140 Compressed image with P = 20 

using Huffman Encoding 

  

Compression Ratio = 11 

PSNR = 51.9217 dB 

Compression Ratio = 14 

PSNR = 49.7758 dB 

  

Figure 5.2.141 Compressed image with P =30 

using Huffman Encoding 

Figure 5.2.142 Compressed image with P = 40 

using Huffman Encoding 
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Compression Ratio = 16 

PSNR = 48.3914 dB 

Compression Ratio = 18 

PSNR = 46.7576 dB 

  

Figure 5.2.143 Compressed image with P = 50 

using Huffman Encoding 

Figure 5.2.144 Compressed image with P = 60 

using Huffman Encoding 

  

 Compression Ratio = 6 

PSNR = 72.2084 dB 

  

Figure 5.2.145 Original DONKEY Image Figure 5.2.146 Compressed image with P = 5 

using Huffman Encoding 

  

Compression Ratio = 8 

PSNR = 69.2338 dB 

Compression Ratio = 13 

PSNR = 63.4845 dB 

  

Figure 5.2.147 Compressed image with P =10 

using Huffman Encoding 

Figure 5.2.148 Compressed image with P = 20 

using Huffman Encoding 
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Compression Ratio = 19 

PSNR = 58.5874 dB 

Compression Ratio = 24 

PSNR = 54.4774 dB 

  

Figure 5.2.149 Compressed image with P =30 

using Huffman Encoding 

Figure 5.2.150 Compressed image with P = 40 

using Huffman Encoding 

  

Compression Ratio = 28  

PSNR = 52.5357 dB 

Compression Ratio =35  

PSNR = 50.6168 dB 

  

Figure 5.2.151 Compressed image with P = 50 

using Huffman Encoding 

Figure 5.2.152 Compressed image with P = 60 

using Huffman Encoding 

  

 Compression Ratio = 5 

PSNR = 77.4233 dB 

  

Figure 5.2.153 Original BUTTERFLY Image Figure 5.2.154 Compressed image with P = 5 

using Huffman Encoding 
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Compression Ratio = 7 

PSNR = 68.8355 dB 

Compression Ratio =11  

PSNR = 61.1711 dB 

  

Figure 5.2.155 Compressed image with P =10 

using Huffman Encoding 

Figure 5.2.156 Compressed image with P = 20 

using Huffman Encoding 

  

Compression Ratio = 32 

PSNR = 62.339 dB 

Compression Ratio = 20 

PSNR = 48.5618 dB 

  

Figure 5.2.157 Compressed image with P =30 

using Huffman Encoding 

Figure 5.2.158 Compressed image with P = 40 

using Huffman Encoding 

  

Compression Ratio = 23 

PSNR = 47.5036 dB 

Compression Ratio = 26 

PSNR = 46.5698 dB 

  

Figure 5.2.159 Compressed image with P = 50 

using Huffman Encoding 

Figure 5.2.160 Compressed image with P = 60 

using Huffman Encoding 
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 Compression Ratio = 4 

PSNR = 60.1883 dB 

  

Figure 5.2.161 Original HORIZONTAL LINE 

Image 

Figure 5.2.162 Compressed image with P = 5 

using Huffman Encoding 

  

Compression Ratio = 5 

PSNR = 59.5537 dB 

Compression Ratio = 6  

PSNR = 54.9828 dB 

  

Figure 5.2.163 Compressed image with P =10 

using Huffman Encoding 

Figure 5.2.164 Compressed image with P = 20 

using Huffman Encoding 

  

Compression Ratio = 6  

PSNR = 54.4989 dB 

Compression Ratio = 7  

PSNR = 52.1679 dB 

  

Figure 5.2.165 Compressed image with P =30 

using Huffman Encoding 

Figure 5.2.166 Compressed image with P = 40 

using Huffman Encoding 
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Compression Ratio = 8 

PSNR = 49.1411 dB 

Compression Ratio = 10  

PSNR = 47.7637 dB 

  

Figure 5.2.167 Compressed image with P = 50 

using Huffman Encoding 

Figure 5.2.168 Compressed image with P = 60 

using Huffman Encoding 

  

 Compression Ratio = 12 

PSNR = 77.3835 dB 

  

Figure 5.2.169 Original VERTICAL LINE 

Image 

Figure 5.2.170 Compressed image with P = 5 

using Huffman Encoding 

  

Compression Ratio = 16 

PSNR = 67.2358 dB 

Compression Ratio = 22 

PSNR = 62.2183 dB 

  

Figure 5.2.171 Compressed image with P =10 

using Huffman Encoding 

Figure 5.2.172 Compressed image with P = 20 

using Huffman Encoding 
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Compression Ratio = 27 

PSNR = 57.2394 dB 

Compression Ratio = 32  

PSNR = 53.849 dB 

  

Figure 5.2.173 Compressed image with P =30 

using Huffman Encoding 

Figure 5.2.174 Compressed image with P = 40 

using Huffman Encoding 

  

Compression Ratio = 37 

PSNR = 51.2781 dB 

Compression Ratio =42  

PSNR = 49.5102 dB 

  

Figure 5.2.175 Compressed image with P = 50 

using Huffman Encoding 

Figure 5.2.176 Compressed image with P = 60 

using Huffman Encoding 
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The resultant compressed images of standard JPEG-2000 application are figure 5.2.177 

to 5.2.187. 

 
Compression Ratio = 4.1712 

PSNR = 191.6040 dB 

Compression Ratio = 6.1292 

PSNR = 241.2325 dB 

  

Figure 5.2.177 Compressed image of Aishwarya 

using JPEG-2000 
Figure 5.2.178 Compressed image of Cheetah 

using JPEG-2000 
  

Compression Ratio = 10.6 

PSNR = 170.5337 dB 

Compression Ratio = 4.9675  

PSNR = 153.3857 dB 

  

Figure 5.2.179 Compressed image of Lena using 

JPEG-2000 
Figure 5.2.180 Compressed image of Barbara 

using JPEG-2000 
  

Compression Ratio = 2.2551 

PSNR = 185.8936 dB 

Compression Ratio = 2.6578 

PSNR = 200.7146 dB 

  

Figure 5.2.181 Compressed image of Mandrill 

using JPEG-2000 
Figure 5.2.182 Compressed image of Bird using 

JPEG-2000 
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Compression Ratio = 2.2412 

PSNR = 186.2608 dB 

Compression Ratio = 3.1463 

PSNR = 191.3145 dB 

  

Figure 5.2.183 Compressed image of Rose using 

JPEG-2000 
Figure 5.2.184 Compressed image of Donkey 

using JPEG-2000 
  

Compression Ratio = 3.5648 

PSNR = 197.1621 dB 

Compression Ratio = 35.1111 

PSNR =192.9029 dB 

  

Figure 5.2.185 Compressed image of Butterfly 

using JPEG-2000 
Figure 5.2.186 Compressed image of Horizontal 

using JPEG-2000 
  

Compression Ratio = 180.263 

PSNR = 238.4996 dB 

 

 

 

Figure 5.2.187 Compressed image of Vertical 

using JPEG-2000 
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CHAPTER 6 

CONCLUSION  

 

6.1.0 INTRODUCTION 

The basic aim of the researcher is to optimize the compression ratio by retaining the 

quality of the resultant image. It is possible to use the optimization techniques at each of the 

stages of the compression. The work aims at optimizing all these stages of the compression 

method, and every stage of optimization is discussed in previous chapters and conclusions 

are elaborated.  

 In the research work the different algorithms are implemented and tested over the 

natural and synthetic images, and results are given. Based on the work the following 

concluding remarks are drawn.  

6.1.1 SELECTION OF WAVELET 

It is observed that the choice of mother wavelet used in the transformation depends 

on nature of the image. Haar wavelets, which are also known as db1, give good results for 

synthetic images, and db3, db4, db5, db6 give good results for natural images. It is also 

observed that larger number of taps does not imply better peak signal to noise ratio and 

visual quality but the computational complexity is more in that case. A major disadvantage 

of Daubechies and Coiflet wavelets is their asymmetry, which can cause artifacts at borders 

of the wavelet sub-bands. Haar wavelet is the only wavelet, which is orthogonal, compactly 

supported and symmetric. For good visual quality, and more compression ratio, wavelet 

must support symmetry and compact properties. If both symmetry and compact support is 

required in wavelets, then one should relax the orthogonality condition and allow non-

orthogonal wavelet functions. Bi-orthogonal wavelets are compactly supported and 

symmetric. It is observed that percentage of zeros in Bi-orthogonal wavelet is less by the 

amount of one to two percent as compared to the Daubechies wavelet.  But the symmetry 

property present in Bi-orthogonal wavelets is responsible for good visual quality of an 

image. From comparative study of different wavelets, in still image compression 

techniques, it is concluded that the final choice of optimal wavelet depends on the 

subjective and objective image quality measures, and computational complexity. It is 

shown that the best of the known wavelets is Bior2.2 wavelet. It provides the best visual 
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image quality for different image contents with comparable percentage of zeros and it has 

low computational complexity.   

6.1.2 WAVELET PACKETS 

It is observed that for most of natural images, the percentage of zeros of wavelet 

packets is more than wavelet, by 0.0437 to 2.6366 percent. This change is significant for 

the high frequency images and insignificant for low frequency images. For the synthetic 

images, percentage of zeros is less by 0.003 to 1.2372. There is a negligible change in peak 

signal to noise ratio. The wavelet packets tree preserves the high frequency components, 

those are lost in wavelet decomposition, and therefore, researcher strongly recommends the 

wavelet packets decomposition for image compression, even though the changes in 

percentage of zeros is not significant in few natural and synthetic images[110]. 

6.1.3 SELCTION OF BEST BASIS 

In wavelet packets tree, number of sub-bands are more, for J level decomposition 

the number of sub-bands are 4
J
, and hence it takes more time for the decomposition. To 

reduce the time complexity of wavelet packets decomposition, there is a need to select the 

sub-bands, which include significant information in compact form. The Threshold entropy, 

Log entropy and Shannon entropy are used as the cost functions to select the best basis. In 

an efficient image compression process, it is desired that the time complexity should be 

minimum, and the developed algorithm should not be human dependant. For example in an 

algorithm of selection of best basis based on Threshold entropy, the human interaction is 

required for selection of threshold value. As a threshold value changes the structure of a 

tree also changes, and there is no assurance of visual quality of an image, the important 

information may be lost in the process [113]. Hence even though the selection of best basis 

based on Threshold entropy method is simple with less time complexity, it cannot be 

preferred because of its human dependency. The wavelet packets best tree based on Log 

entropy and wavelet packets best tree based on Shannon entropy, do not have human 

dependency, but their time complexity is more [112,110]. Researcher strongly 

recommends, the wavelet packets best tree based on energy contain. In proposed method 

there is no human dependency, and its time complexity is also less. It is observed that for 

most of natural images, percentage of zeros of proposed method is more than percentage of 

zeros of wavelet packets best tree based on threshold entropy and wavelet packets best tree 
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based on log entropy by 0.0418 to 1.4332 percent and 0.0898 to 3.6417 with good visual 

quality. The percentage of zeros of proposed method is same as percentage of zeros of 

wavelet packets best tree based on Shannon entropy. By considering time complexity, 

human dependency, peak signal to noise ratio and percentage of zeros, researcher strongly 

recommends the wavelet packets best tree based on energy contain [111]. 

6.1.4 THRESHOLD  

The high compression ratio is achieved by using the thresholding to the wavelet 

packets coefficients. The advantages of wavelet packets can be gained by proper selection 

of thresholds. In image compression the selection of threshold plays the crucial role. In the 

proposed algorithm threshold is adaptive, and the adaptive threshold is calculated on the 

basis of nature of the image. The statistical properties of the sub-images of different 

orientations are usually different, and thus different thresholds should be adaptive to each 

sub-image. The threshold is calculated for each resolution and orientation, taking into 

account the different statistical properties of each sub-image, in order to prevent the major 

structures from being smoothened.  

For high value of threshold, most of the coefficients are zero, and it results in high 

compression, but visual quality of image is poor, and the peak signal to noise ratio is very 

low. For low value of threshold the visual quality of signal is good, peak signal to noise 

ratio is high, but compression ratio is low. The basic aim of the research is to improve the 

compression ratio with maintaining the quality of image, by exploiting the advantages of 

wavelet packets tree. For fixed global threshold the result is good for one image but for 

same value of threshold the result for other images may be poor. Therefore selection of 

threshold is important in image compression.  

To obtain good visual quality of the image, human perception is main factor to 

select the threshold. Human eye is less sensitive to high frequency signal and more 

sensitive to low frequency signal. Hence most of the researchers suggest the low value of 

threshold for high frequency spectrum and high value of threshold for low frequency 

spectrum. But these thresholds can work well, if image has maximum low frequency 

components, and less value of high frequency components. The result for the image, which 

includes more high frequency spectrum distributed all over the image, is poor. The goal to 

select variable threshold is to achieve the good visual picture quality at low bit rate. In 
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order to benefit from variable threshold, proper model for determining the threshold, based 

on perceptual value of the human eye must be employed. 

Thus the technique of evaluating adaptive threshold is recommended, which is 

based on mother wavelet, energy concentrated in sub-bands, and level of decomposition. 

The algorithm is developed, implemented, and tested over the natural and synthetic images 

[109]. In algorithm the variable P is used to provide the flexibility to the user in terms of 

visual quality, and compression ratio. By considering the constraints of human visual 

system, the value of P chosen for higher-level decomposition is more and is lower for low-

level decomposition.  

The human visual system is more sensitive to low frequency components, and less 

sensitive to high frequency components. Therefore for high frequency sub-bands the 

threshold value should be more to neglect the high frequency components. But it is 

observed that if the energy contain of high frequency component is low in a sub-band, then 

the above observation holds true. But if the energy of high frequency component in a sub-

band is more, then one cannot neglect the high frequency components. And hence in 

threshold calculation researcher has considered the energy contain of a sub-band and the 

median of the sub-band. To conclude, the recommended threshold is adaptive, which is 

based on nature of the image, and type of wavelet used. The threshold is calculated for the 

Y, Cr and Cb of color images separately for different value of P and it is observed that as a 

value of P increases, the value of thresholds decrease. For example for the image Mandrill, 

the value of threshold of Y component, for the value of P = 10, changes from 1.6730 to 

169.2168, for the value of P = 20, it changes from 14.0137 to 239.2168.  

6.1.5 ENCODING 

After the process of thresholding, most of the components are adjusted to zero 

values, and encoder further compresses the coefficients of wavelet packets tree to give 

better overall compression. An encoding process removes the redundancies in the form of 

repetitive bit patterns in the output of thresholding. The most commonly used entropy 

encoders are Huffman encoder, and Arithmetic encoder, and simple Run-Length Encoder. 

The researcher suggests the modified technique for the encoding. After the thresholding, 

repetitions of the coefficients of a wavelet packets tree can be a eliminated by using 

suggested enhanced Run-Length Encoding, and then for the bit coding well known 

Huffman coding or Arithmetic coding methods are used.  
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In simple RLE, some data sets can be highly compressed, whereas other data sets 

can actually grow larger due to the encoding. This problem of an existing run-length 

encoding technique is eliminated up to the certain extent by using enhanced Run-Length 

Encoding technique. Although this method overcomes the problem of RLE, it introduces 

little error that is not much noticeable. As the flexibility is already extended to the user 

about required quality of resultant image verses compression ratio by selecting the value of 

P, the effect of error introduced by enhanced RLE technique is compensated and hence, the 

enhanced RLE technique is strongly recommended.  

6.2.0 CONCLUDING REMARKS 

 The final algorithm of image compression using wavelet packet best tree based on 

energy contain with adaptive threshold and enhanced RLE is implemented, and tested over 

the set of natural and synthetic images and concluding remarks based on results are 

discussed.  

Aishwarya is widely used natural image, which does not contain large amount of 

high frequency or oscillating patterns. It is 24-bit RGB colored bitmap image. The original 

size of the image is 640×480 (file size is 900KB). The result shows that the arithmetic 

encoding gives better performance than Huffman encoding for the proposed algorithm. The 

proposed compression algorithm using arithmetic encoding gives compression ratio in the 

range of 19:1 to 53:1, and for Huffman encoding from 17:1 to 50:1, as the value of P 

changes from 5 to 60. The peak signal to noise ratio varies from 80.0646 dB to 64.8412 dB.  

Cheetah is widely used natural image, which has maximum low frequency 

components and few high frequency components. It is 24-bit RGB bitmap image. The 

original size of the image is 640×480 (file size is 900KB). The result shows that the 

arithmetic encoding gives the better performance than Huffman encoding for the proposed 

algorithm. The proposed compression algorithm using arithmetic encoding gives 

compression ratio in the range of 11:1 to 42:1, and for Huffman encoding from 9:1 to 39:1, 

as the value of P changes from 5 to 60. The peak signal to noise ratio varies from 79.1685 

dB to 59.1732 dB.  

Lena is widely used natural image, which has maximum low frequency components 

and few high frequency components. It is 24-bit RGB bitmap image. It contains the 

maximum value for luminance (Y) and negligible values of Cr and Cb in YCrCb color 

model, and hence it is observed that the compression ratio is high as compared to the other 
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colored images. The original size of the image is 640×480 (file size is 900KB). The result 

shows that the arithmetic encoding gives the better performance than Huffman encoding for 

the proposed algorithm. The proposed compression algorithm using arithmetic encoding 

gives compression ratio in the range of 24:1 to 75:1, and for Huffman encoding from 20:1 

to 67:1, as the value of P changes from 5 to 60. The peak signal to noise ratio varies from 

85.6561 dB to 66.7228 dB.  

Barbara is popular choice from the class of natural test images that exhibits large 

amount of high frequency and oscillating patterns. It is 24-bit RGB bitmap image. The 

original size of the image is 501×511 (file size is 764 KB). The result shows that the 

arithmetic encoding gives the better performance than Huffman encoding for the proposed 

algorithm. The proposed compression algorithm using arithmetic encoding gives 

compression ratio in the range of 7:1 to 37:1, and for Huffman encoding from 6:1 to 34:1, 

as the value of P changes from 5 to 60. The peak signal to noise ratio varies from 71.921 

dB to 51.9716 dB. 

Mandrill image is another image that is quite difficult to compress significantly. The 

texture of the Mandrill image has a large amount of high frequency contents, and spread 

over most of the image. It is 24-bit colored RGB bitmap image. The original size of the 

image is 512×512 (file size is 768 KB). The result shows that the arithmetic encoding gives 

the better performance than Huffman encoding for the proposed algorithm. The proposed 

compression algorithm using arithmetic encoding gives compression ratio in the range of 

4:1 to 21:1, and for Huffman encoding from 4:1 to 19:1, as the value of P changes from 5 to 

60. The peak signal to noise ratio varies from 62.1245 dB to 46.1098 dB. 

Bird is another natural image, which has very bright colors. It is 24-bit RGB colored 

bitmap image. The original size of the image is 640×480 (file size is 900KB). The result 

shows that the arithmetic encoding gives the better performance than Huffman encoding for 

the proposed algorithm. The proposed compression algorithm using arithmetic encoding 

gives compression ratio in the range of 11:1 to 39:1, and for Huffman encoding from 9:1 to 

35:1, as the value of P changes from 5 to 60. The peak signal to noise ratio varies from 

75.417 dB to 57.2633 dB. 

Rose is another natural image, which has maximum red and green basic colors, and 

surrounded by water drops textures. It is 24-bit RGB colored bitmap image. The original 

size of the image is 640×480 (file size is 900KB). The result shows that the arithmetic 

encoding gives the better performance than Huffman encoding for the proposed algorithm. 
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The proposed compression algorithm using arithmetic encoding gives compression ratio in 

the range of 4:1 to 20:1, and for Huffman encoding from 4:1 to 18:1, as the value of P 

changes from 5 to 60. The peak signal to noise ratio varies from 65.134 dB to 46.7576 dB. 

Donkey is another natural image, which is mainly a smooth image with slight 

oscillating pattern observed at the fur on the neck. It is 24-bit RGB colored bitmap image. 

The original size of the image is 600×440 (file size is 773KB). The result shows that the 

arithmetic encoding gives the better performance than Huffman encoding for the proposed 

algorithm. The proposed compression algorithm using arithmetic encoding gives 

compression ratio in the range of 7:1 to 35:1, and for Huffman encoding from 6:1 to 35:1, 

as the value of P changes from 5 to 60. The peak signal to noise ratio varies from 72.2084 

dB to 50.6168 dB. 

Butterfly is synthetic image, which has prominent color patches distributed all over 

the image. It is 24-bit RGB colored bitmap image. The original size of the image is 

452×290 (file size is 384KB). The result shows that the arithmetic encoding gives the better 

performance than Huffman encoding for the proposed algorithm. The proposed 

compression algorithm using arithmetic encoding gives compression ratio in the range of 

6:1 to 30:1, and for Huffman encoding from 5:1 to 26:1, as the value of P changes from 5 to 

60. The peak signal to noise ratio varies from 77.4233 dB to 46.5698 dB. 

Horizontal is synthetic image, which has colored horizontal geometric bars with 

alternating red, green and blue colors, constructed using paint applications. It is 24-bit RGB 

colored bitmap image. The original size of the image is 571×377 (file size is 631KB). The 

result shows that the arithmetic encoding gives the better performance than Huffman 

encoding for the proposed algorithm. The proposed compression algorithm using arithmetic 

encoding gives compression ratio in the range of 6:1 to 12:1, and for Huffman encoding 

from 4:1 to 10:1, as the value of P changes from 5 to 60. The peak signal to noise ratio 

varies from 76.2735 dB to 47.7637 dB. 

Vertical is synthetic image, which has colored vertical geometric bars with 

alternating green, red, and blue colors, constructed using paint applications. It is 24-bit 

RGB colored bitmap image. The original size of the image is 620×377 (file size is 684KB). 

The result shows that the arithmetic encoding gives the better performance than Huffman 

encoding for the proposed algorithm. The proposed compression algorithm using arithmetic 

encoding gives compression ratio in the range of 14:1 to 46:1, and for Huffman encoding 
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from 12:1 to 42:1, as the value of P changes from 5 to 60. The peak signal to noise ratio 

varies from 77.3835 dB to 49.5102 dB. 

 The results show that the compression ratio is good for low frequency (smooth) 

images, and it is observed that it is very high for gray images. For high frequency 

images such as Mandrill, Barbara, the compression ratio is good, and the quality of 

the images is also retained. These results are compared with JPEG-2000 application, 

and it is found that the results obtained by using the proposed algorithm are better.  

 The results are taken only for limited values of P in the range of 5 to 60 only; it is 

possible for few images that the value of P may be taken more than 60 or less than 5 

with comparable results.  

 The results obtained using implemented algorithm with arithmetic encoding, and 

Huffman encoding are compared, and it is concluded that for the implemented 

algorithm arithmetic encoding gives better results than Huffman encoding. 

 It is observed that if the background of the image is mono-color then the distortion 

takes place for high compression ratio. This distortion is mostly observed at the 

backgrounds. For example in the synthetic image Butterfly, it is observed for P = 50 

and P = 60. 

6.3.0 FUTURE SCOPE 

 The wavelet packet best tree based on energy contain with adaptive thresholding 

and enhanced RLE techniques for image compression, presented in this thesis produced the 

best results for natural as well synthetic images, low as well as high frequency images. 

Nonetheless, there is always a room for improvement. The following list includes a number 

of possible future topics for study: 

 In this thesis, the standard basis functions of wavelet are used for transformation 

but it may be possible to use the segment of the image as a basis function for 

transformation.  

 It is important to note that adaptive threshold technique is discussed, and used in 

this thesis. The algorithm used for calculation of thresholds for Y, Cr, and Cb 

components is same. It may be possible to develop the different algorithms for 

calculation of thresholds for Y, Cr, and Cb components by considering their 

importance. 
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 In this work lossy RLE technique is discussed and implemented. The algorithm 

used for calculation of lossy factor for the Y, Cr, and Cb components is same. It 

may be possible to develop the different algorithms for calculation of lossy factor 

for Y, Cr, and Cb components by considering their importance. 

 The wavelet packet best tree based on energy content with adaptive thresholding 

and enhanced RLE has produced good compression ratio with good quality of still 

image. Future research will apply this method to video sequences. It would be a 

natural extension to attempt wavelet packet based video compression. 

 The work can be further extended such that, it may become possible for the 

parallelization of the technique for the parallel computer architectures to achieve 

good speed. 

_____________ 
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